/acuum Measurin Controlling

Vacuum Gauges

Calibration Service

Contents

Vacuum Measuring, Controlling

	_		_		П
u	e	п	e	га	ш

Applications for Vacuum Gauges
Select the Combination of Sensor and Gauges which is ideal for your Application $\ldots \ldots \ldots \ldots$ 6
Basic Terms of Vacuum Metrology
Connection Accessories for Small Flanges
Products
Handheld Measurement Instruments
PIEZOVAC Sensor PV 101 / THERMOVAC Sensor TM 101
Active Sensors / Transmitters
CERAVAC Transmitters CTR 100 N and CTR 101 N
Linear Pressure Sensors DI/DU 200, DI/DU 201, DI/DU 2000, DI/DU 2001, DI/DU 2001 rel 20
THERMOVAC Transmitters TTR 91 N (S), TTR 96 N, TTR 911 N (C), TTR 916 N
THERMOVAC Transmitters TTR 91 R
THERMOVAC Transmitters TTR 101, TTR 101 S2, TTR 101 S2 PB
PENNINGVAC Transmitters PTR 90 N
PENNINGVAC Transmitters PTR 225 N, PTR 237 N
Loadlock Transmitter TTR 200 N, PTR 200 N
IONIVAC Transmitter ITR 90
IONIVAC Transmitter ITR 200 S
Spiral Tube
Connection Cables for Active Sensors
Controller and Operating Units for Active Sensors
GRAPHIX ONE, TWO, THREE
DISPLAY ONE
DISPLAY THREE
Passive Sensors
THERMOVAC Sensors TR 211, TR 211 NPT, TR 212, TR 216
PENNINGVAC Sensors PR 25, PR 26, PR 27, PR 28
IONIVAC Sensors IE 414 and IE 514
Operating Unit for Passive Sensors
COMBIVAC CM 51, CM 52
IONIVAC IM 540
Mechanical Gauges (Vacuum Gauges Analog Display)
Bourdon Vacuum Gauges
Capsule Vacuum Gauges
Diaphragm Vacuum Gauge DIAVAC DV 1000

Additional Sensors

Older Sensors / Replacement Sensors	3
Pressure Switches and Control Instruments	
Pressure Control System Move	3
Low Pressure Safety Switch PS 113 A	3
Pressure Switches PS 115	3
Switching Amplifier SV 110	C
Diaphragm Pressure Regulators MR 16 and MR 50	2
Miscellaneous	
Levbold Calibration Service	4

General

Applications for Vacuum Gauges

						/	/	/	/	/	/			
						/ /	/ /	/ /	/ /	/ ,	/ ,	/ /	/ /	/ ,
						Cause Cause	/ ,	/	onts		SUPUL SUPUL	/D	ON PROPERTY OF THE PROPERTY OF	
						on John Carlos	Mede Little Litt	/x(TUP.	\ \ \ !	Ollo		ALL ALL STREET	
			/			Cande		0/1/2	Xet /	anso)	emitte	Grittle		/ ,
		a URD	OMAC SOURCE			Sarah Ch	SUIT	, Cer	OII.	24	300 /16		de di	/65
Galiges		/5	2/2	25/j	18cn/	2/12	160 C	(10)	(65°) ;	JRO/C	NRO .	(19/	Mo	SUR
Cally	/	JRD	JRV	Sille	JRC	Mell	ORVA	ato,	CAM	MILL	MAC	WADO	1010	SSU
		8/4) ³⁰ */ \$	1/5	(y) C	7/3	<u>*</u> /^	XY \{		5/(),//	9 [*] / 9	(b) /
Mechanical engineering														
Automotive industry;														
illing of brake and air conditioning systems /acuum conveying technology		+-												
Packaging technology		-	-											-
solation vacuum		+	-				_							
Chemical processes		-	-				_							
•		-	-	_										
Absolute pressure measurements in gas mixtures		₽	-											_
Orying and degassing processes		+-												
Solvent recovery /acuum pressure control		+												
n existing central vacuum supply systems														
Electrics/electronics/optics														
Evaporation and coating systems														
Monitoring and controlling of sputter systems														
Semiconductor technology (CVD, plasma etching etc.)														
on implantation														
amp production														
Analytical instruments and surface physics														
ESCA, SIMS, AES, XPS														
Electron microscopy														
Crystal growing														
Gas analysis systems, mass spectrometers														
Research														
Measurement of ultimate pressure in UHV systems														
Application in MBE systems														
Application in MBE systems														
Beam guidance systems, cyclotron														
Fusion experiments														
Space simulation chamber														
System control/pressure control														
Pressure checks on backing pumps and vacuum systems														
Safety circuits in vacuum systems,								_		_				
protection of vacuum gate valves	_	-						_						
Control of ionization vacuum gauges		-												
Pressure measurements on HV pump systems, e.g. diffusion, TMP, cryopump systems														
/enting systems														
/alve control, pressure dependant systems control														
Simple pressure control arrangements										_		T		
Calibration		1			_		_		_				_	_
Calibration of vacuum gauges and mass spectrometers	_													
Reference instruments for the determination		+									-			
of the physical properties of gases														
Precision measurements of low pressures also,														
the presence of corrosive or reactive gases,		+												
Aiscellaneous		-												
acuum annealing, melting, soldering and ardening furnaces														
Cooling and air conditioning technology														
Electron beam welding		1					_	ī						
Metallurgy		+	1					_	=		-			-

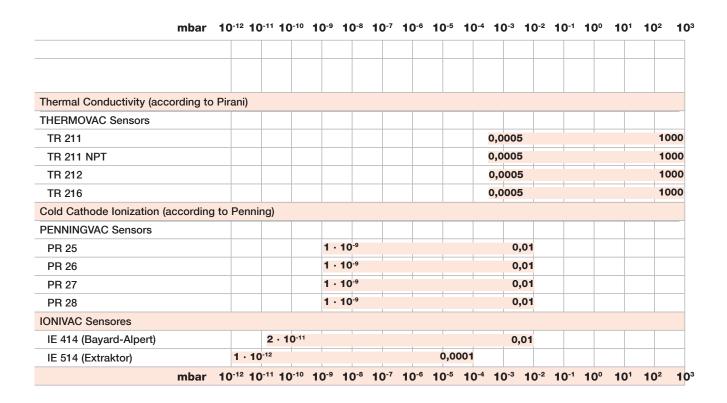
Select the Combination of Sensor and

Operating Ranges for Active Sensors

 $10^{-12}\ 10^{-11}\ 10^{-10}\ 10^{-9}\ 10^{-8}\ 10^{-7}\ 10^{-6}\ 10^{-5}\ 10^{-4}\ 10^{-3}\ 10^{-2}\ 10^{-1}\ 10^{0}$ 10^{2} 10³ 10¹ Capacitance Diaphragm CERAVAC Transmitters (x = 2, 3, 4 oder 5) CTR 100 / 100 N (1000 Torr) 0,13 1330 0,013 133 CTR 100 / 100 N (100 Torr) CTR 100 / 100 N 0,0013 13 (10 Torr) CTR 100 / 100 N 0,00013 (1 Torr) 1,3 0,13 CTR 100 / 100 N (0,1 Torr) 0,000013 CTR 101 / 101 N (1000 Torr) 0,13 1330 CTR 101 / 101 N (100 Torr) 0,013 133 CTR 101 / 101 N (10 Torr) 0,0013 13 CTR 101 / 101 N (1 Torr) 0,00013 1,3 0,000013 0,13 CTR 101 / 101 N (0,1 Torr) Thermal Conductivity (according to Pirani) THERMOVAC Transmitters TTR 101 5 · 10-5 1500 (Pirani combined with capacitance diaphragm) 5 · 10-5 1000 TTR 91 / 91 N 1000 TTR 91 R 5 · 10-4 5 · 10-5 1000 TTR 96 S / 96 N S 1 · 10⁻⁵ TTR 911 / 911 N 1000 TTR 911 CC / 911 N C S 5 · 10-5 1000 TTR 916 / 916 N 5 · 10-5 1000 Cold Cathode Ionization (according to Penning) PENNINGVAC Transmitters PTR 90 / 90 N, DN 40 CF 1 · 10-8 1000 1 · 10-8 PTR 90 / 90 N, DN 40 ISO-KF 1000 PTR 90 / 90 N, DN 25 CF 1 · 10-8 1000 PTR 225 / 225 N, DN 25 ISO-KF 1 · 10-8 0,05 PTR 237 / 237 N, DN 40 CF 1 · 10-8 0,05 Hot Cathode Ionization **IONIVAC Transmitters** (Bayard-Alpert combined with Pirani) 5 · 10-10 1000 **ITR 90** ITR 200 with and without display 5 · 10⁻¹⁰ 1000 Linear Pressure Sensors 1) DI/DU 200 and 201 0.1 200 DI/DU 2000 and 2001 2000 DI/DU 2001 rel. -1000 +1000 Handheld Measurement Instruments **THERMOVAC Sensors** TM 101 5 · 10-4 1200 Loadlock Transmitters TTR 200 N, DN 16 ISO-KF 1500 5 · 10-5 PTR 200 N, DN 16 ISO-KF $10^{-12} \ 10^{-11} \ 10^{-10} \ 10^{-9} \ 10^{-8} \ 10^{-7} \ 10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 10^{0} \ 10^{1} \ 10^{2}$

Gauges which is ideal for your Application

Operating Units for Active Sensors


	DIS	PLAY		GRAPHIX		
	ONE	THREE	ONE	TWO	THREE	IM 540
Part No. EU / US	230 001	230 025	230680V01	230681V01	230682V01	230 10
			1	1, 2	1, 2, 3	3, 4
			1	1, 2	1, 2, 3	3, 4
			1	1, 2	1, 2, 3	3, 4
			1	1, 2	1, 2, 3	3, 4
			1	1, 2	1, 2, 3	3, 4
			1	1, 2	1, 2, 3	3, 4
			1	1, 2	1, 2, 3	3, 4
			1	1, 2	1, 2, 3	3, 4
			1	1, 2	1, 2, 3	3, 4
			1	1, 2	1, 2, 3	3, 4
		4.0.0		1.0	4.00	
	1	1, 2, 3	1	1, 2	1, 2, 3	3, 4
	1	1, 2, 3	1	1, 2	1, 2, 3	3, 4
	1	1, 2, 3	1	1, 2	1, 2, 3	3, 4
	1	1, 2, 3	1	1, 2	1, 2, 3	3, 4
	1	1, 2, 3	1	1, 2	1, 2, 3	3, 4
	1	1, 2, 3	1	1, 2	1, 2, 3	3, 4
	1	1, 2, 3	1	1, 2	1, 2, 3	3, 4
				_		
	1	1, 2, 3	1	1, 2	1, 2, 3	
	1	1, 2, 3	1	1, 2	1, 2, 3	
	1	1, 2, 3	1	1, 2	1, 2, 3	
		1, 2, 3	1	1, 2	1, 2, 3	
		1, 2, 3	1	1, 2	1, 2, 3	
			1	1, 2	1, 2, 3	
			1	1, 2	1, 2, 3	
				1, 2	1, 2, 0	
	1 (Only DU)	1,2,3 (Only DU)	1 (Only DU)	1,2 (Only DU)	1,2,3 (Only DU)	
	1 (Only DU)	1,2,3 (Only DU)	1 (Only DU)	1,2 (Only DU)	1,2,3 (Only DU)	
	1 (Only DU)	1,2,3 (Only DU)	1 (Only DU)	1,2 (Only DU)	1,2,3 (Only DU)	
	r (Only DO)	1,2,0 (01119 00)	r (Only DO)	1,2 (Offiny DO)	1,2,0 (Offig DO)	

^{1, 2, 3, 4} indicate the channel to which the sensor may be connected $% \left(1,2,3,4\right) =0$

¹⁾ Possible

Select the Combination of Sensor and

Operating Ranges for passive Sensors

Gauges which is ideal for your Application

Operating Units for passive Sensors

	IONIVAC	СОМ	BIVAC		
	IM 540	CM 51	CM 52		
Part No. EU / US	230 100	_	_		
Part No. RS 232 C Part No. Profibus	-	230 110 230 111	230 115 230 116		
		1, 2	1, 2		
		1, 2	1, 2		
		1, 2	1, 2		
		1, 2	1, 2		
		3			
		3			
		3			
		3			
	1, 2		3		
	1, 2		3		

^{1, 2, 3} indicate the channel to which the sensor may be connected

Basic Terms of Vacuum Metrology

Today, the total range of vacuum pressure accessible to measurement extends from atmospheric pressure (about 1000 mbar (750 Torr)) down to 10⁻¹² mbar/Torr, i.e. it extends over 15 powers of ten. The instruments used for measuring the pressure within this wide range are called vacuum gauges. For physical reasons it is not possible to create a single vacuum sensor through which it might be possible to perform quantitative measurements within the entire pressure range. Therefore, a variety of different vacuum gauges are available, each with their own characteristic measurement range which commonly extends over several powers of ten. A difference is made between direct and indirect pressure measurements. In the case of direct (or absolute) pressure measurements, the readings obtained through the vacuum gauge are independent of the type of gas and the pressure which is to be measured. Common are so-called mechanical vacuum gauges where the pressure is determined directly by recording the force acting on the surface of a diaphragm. In the case of socalled indirect pressure measurements the pressure is determined as a function of a pressure dependant property of the gas (thermal conductivity, ionization probability, for example). These properties do not only depend on the pressure, but also on the molar mass of the gases. For this reason, the pressure readings obtained through vacuum gauges which rely on indirect pressure measurements, depend on the type of gas. The readings usually relate to air or nitrogen as the measurement gas. For the measurement of other vapors or gases the corresponding correction factors must be applied.

Vacuum Gauges where the Pressure Readings are Independent of the Type of Gas (Mechanical Vacuum Gauges)

BOURDON Vacuum Gauge

The inside of a tube which is bent into a circular arc (the so-called Bourdon tube) is connected to the vacuum system. Due to the effect of the external atmospheric pressure, the end of the tube bends more or less during the evacuation process. This actuates the pointer arrangement which is attached to this point. The corresponding pressure can be read off on a linear scale. With Bourdon gauges it is possible to roughly determine pressures between 10 mbar (7.5 Torr) and atmospheric pressure.

Capsule Vacuum Gauge

This vacuum gauge contains a hermetically sealed, evacuated, thinwalled diaphragm capsule which is located within the instrument. As the vacuum pressure reduces, the capsule bulges. This movement is transferred via a system of levers to a pointer and can then be read off as the pressure on a linear scale.

Diaphragm Vacuum Gauge

In the case of the diaphragm vacuum gauge which is capable of absolute pressure measurements, a sealed and evacuated vacuum chamber is separated by a diaphragm from the vacuum pressure to be measured. This serves as the reference quantity.

With increasing evacuation, the difference between the pressure which is to be measured and the pressure within the reference chamber becomes less, causing the diaphragm flex. This flexure may be transferred by mechanical means like a lever, for example, to a pointer and scale, or electrically by means of a strain gauge or a bending bar for conversion into an electrical measurement signal. The measurement range of such diaphragm vacuum gauges extends from 1 mbar (0.75 Torr) to over 2000 mbar (1500 Torr).

Capacitance Vacuum Gauge

The pressure sensitive diaphragm of these capacitive absolute pressure sensors is made of Al₂O₂ ceramics. The term "capacitive measurement" means that a plate capacitor is created by the diaphragm with a fixed electrode behind the diaphragm. When the distance between the two plates of this capacitor changes, a change in capacitance will result. This change, which is proportional to the pressure, is then converted into a corresponding electrical measurement signal. Here too, an evacuated reference chamber serves as the reference for the pressure measurements. With capacitance gauges it is possible to accurately measure pressures from 10⁻⁵ mbar/Torr to well above atmospheric pressure, whereby different capacitance gauges having diaphragms of different thickness (and therefore sensitivity) will have to be

Vacuum Gauges where the Pressure Readings depend of the Type of Gas

Thermal Conductivity Gauge (Pirani)

This measurement principle utilizes the thermal conductivity of gases for the purpose of pressure measurements in the range from 10⁻⁴ mbar/Torr to atmospheric pressure. Today, only the principle of the controlled Pirani gauge is used by Leybold in order to attain a quick response. The filament within the gauge head forms one arm of a Wheatstone bridge. The heating voltage which is applied to the bridge is controlled in such a way, that the filament resistance and thus the temperature of the filament remains constant regardless of the quantity of heat given off by the filament. Since the heat transfer from the filament to the gas increases with increasing pressures, the voltage across the bridge is a measure of the pressure.

Improvements with regard to temperature compensation have resulted in stable pressure readings also in the face of large temperature changes, in particular when measuring low pressures.

Cold Cathode Ionization Vacuum Gauge

Here the pressure is measured through a gas discharge within a gauge head whereby the gas discharge is ignited by applying a high tension. The resulting ion current is output as a signal which is proportional to the prevailing pressure. The gas discharge is maintained also at low pressures with the aid of a magnet.

New concepts for the design of such sensors permit safe and reliable operation of these so-called Penning sensors in the pressure range from 10^{-2} to 1×10^{-9} mbar/Torr.

Hot Cathode Ionization Vacuum Gauge

These sensors commonly use three electrodes. A hot cathode emits electrons which impinge on an anode. The gas, the pressure of which is to be measured, is thus ionized. The resulting positive ion current is detected through the third electrode - the so-called ion detector - and this current is used as the signal which is proportional to the pressure.

The hot cathode sensors which are mostly used today, are based on the Bayard-Alpert principle. With this electrode arrangement it is possible to make measurements in the pressure range from 10⁻¹⁰ to 10⁻² mbar/Torr.

Other electrode arrangements permit access to a higher range of pressures from 10⁻¹ mbar/Torr down to 10⁻¹⁰ mbar/Torr. For the measurement of pressures below 10⁻¹⁰ mbar/Torr socalled extractor ionization sensors after Redhead are employed. In extractor ionization gauges the created ions are focused onto a very thin and short ion detector. Due to the geometrical arrangement of this system, interfering influences such as X-ray effects and ion desorption can be almost completely eliminated. The extractor ionization gauge permits pressure measurements in the range from 10⁻⁴ to 10⁻¹² mbar/

Selection of the right Vacuum Gauge

When selecting a suitable instrument for pressure measurements, the pressure range is not the only criteria. The operating conditions for the instrument play an important part. If, for example, there is the risk of excessive contamination, vibrations, or if air inrushes are to be expected etc., the instrument must be rugged enough. Thus for industrial applications diaphragm gauges, controlled thermal conductivity gauges as well as cold cathode ionization gauges are strongly recommended. Precision instruments are very often quite sensitive to rough operating conditions. These should therefore only be used while observing the corresponding applications information.

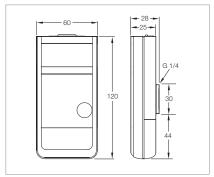
Connection Accessories for Small Flanges

Ordering Information DN 10 ISO-KF DN 16 ISO-KF DN 25 ISO-KF

	Part No.	Part No.	Part No.
Outer centering ring with O-ring Aluminum / FPM (FKM) ((Viton))	183 53	183 53	183 54
Fine filter on centering ring with O-ring Stainless steel / FPM (FKM) ((Viton))	883 95	883 96	883 97
Baffle with centering ring (FPM) ((FKM))	-	_	230 078
Connection accessories for metal seals or bake out room up to 150 °C Ultra sealing ring, aluminum (Set of 3) Outer support ring Clamping ring	883 73 883 74 882 75	883 73 883 74 882 75	883 75 883 76 882 77

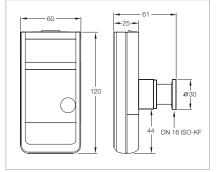
Ordering Information	DN 40 ISO-KF	DN 16 CF	DN 40 CF
• • • • • • • • • • • • • • • • • • • •	DI1 TO 100-111		

	Part No.	Part No.	Part No.
Outer centering ring with O-ring			
Aluminum / FPM (FKM) ((Viton))	183 55	-	-
Fine filter on centering ring with O-ring			
Stainless steel / FPM (FKM) ((Viton))	883 98	-	-
Baffle with centering ring (FPM) ((FKM))	230 079	-	-
Connection accessories for metal seals			
or bake out room up to 150 °C			
Ultra sealing ring, aluminum (Set of 3)	883 77	-	-
Outer support ring	883 78	-	-
Clamping ring	882 78	-	-
Connection accessories			
for CF connections			
Copper seals, (set of 10 pieces)	-	839 41	839 43
Screw (set of 25 pieces)	-	839 00	839 01
Replacement sinter filter with centering ring	231 93 515	_	_


Notes	

Products

Handheld Measuring Instruments Digital PIEZOVAC Sensor PV 101 Digital THERMOVAC Sensor TM 101


PIEZOVAC Sensor PV 101 (left) and THERMOVAC Sensor TM 101 (right)

Dimensional drawings PIEZOVAC PV 101 (mm)

The PIEZOVAC PV 101 has been specially developed for food sector deployments. The device can be operated directly under vacuum conditions. Thanks to its detachable flange connection the size of the sensor was significantly reduced. In the medium vacuum range pressures of up to 0.1 mbar will be traced and read out. The exclusive use of its piezo sensor significantly increases the battery's service life so that the device is continuously ready for operation. With a measuring rate of minimum 50 ms, you are informed in short process times on the current pressure.

The **THERMOVAC TM 101** is the essential device for on-site service calls. Thanks to the easy use and integrated measurement data memory, pressures can be directly measured at different locations for monitoring the application. Owing to the advanced

Dimensional drawings THERMOVAC TM 101 (mm)

measuring range of the high-precision Pirani sensor, pressures of up to $5x10^{-4}$ mbar can be displayed.

Advantages to the User

- Direct display of measuring values; other monitoring devices are not necessary
- Developed for deployments in demanding environments
- Versatile deployment due to mainsindependent power supply
- High-precision measurements of all common gas types
- Export and analysis of stored measurement values via USB interface
- Online analysis of measurement values via USB interface

The digital compact PIEZOVAC PV 101 and THERMOVAC TM 101 combine high-quality sensor technology with modern processor technology in a handy design.

Owing to their battery mode, the devices can be attached and operated at any pressure measuring point, and directly display or store up to 2,000 values for later evaluations and visualizations. All data values stored can be exported and displayed on a computer via USB link and by means of the optional VacuGraph software. The software is especially useful for setting up the devices or calculating rises in pressure for detecting rough leaks.

A carrying case providing space for all required accessories and for storing and transport protection is enclosed with the device and the software.

Typical Applications

- Versatile deployment with vacuum pump and vacuum plant servicings
- Comparative measurements of fixed pressure gauges
- Direct measuring inside vacuum vessels or vacuum packs
- Measuring of rough leaks after maintenance services

Technical Data PIEZOVAC Sensor **THERMOVAC Sensor** PV 101 TM 101

Measurement principle	Piezo-resistive	Piezo-resistive (gas type independent) and thermal conductance Pirani		
Indicated units of measurement	mbar, Torr, microns, hPa	mbar, Torr, microns, hPa		
Measurement range mbar (Torr)	1200 to 0,1 (900 to 0,075)	1200 to 5 x 10 ⁻⁴ (900 to 3.75 x 10 ⁻⁴)		
Maximum overload bar abs.	2	2		
Maximum overload 1200 – 10 mbar (900 to 75 Torr) 10 – 2 x 10 ⁻³ mbar (7.5 to 1.5 x 10 ⁻³ Torr)	±0,3 % of full-scale - -	±0,3 % of full-scale		
< 2 x 10 ⁻³ mbar (< 1.5 x 10 ⁻³ Torr)		< factor 2 of measured value		
Gas type correction factor	Ar, CO ₂ ,He, CO, H ₂ , N ₂ , Kr	Ar, CO ₂ ,He, CO, H ₂ , N ₂ , Kr		
Materials in contact with the vacuum	Stainless steel 1.4305, Viton®, silicon gel	Stainless steel, gold, tungsten, nickel, glass, Viton		
Measurement cycle s	0,1 (50 ms, from 2018 series)	1.0		
Data storing rate s	0.1 to 6000	1 to 6000		
Operating temperature Sensor °C Battery °C	+5 to +50 -20 to +45	+5 to +50 -20 to +45		
Storage temperature Sensor °C Battery °C	-20 to +60 +10 to +25	-20 to +60 +10 to +25		
Supply voltage	Rechargeable 9 V battery (recommendation: type Panasonic 6LR61PM, 9 V / 500 mAh) or 12 – 15 V DC external adaptor (miniature jack, + terminal at the tip)	Rechargeable 9 V battery (recommendation: type Panasonic 6LR61PM, 9 V / 500 mAh) or 12 – 15 V DC external adaptor (miniature jack, + terminal at the tip)		
Power consumption				
< 200 mbar (< 150 Torr) mW > 200 mbar (> 150 Torr) mW	2 2	60 2		
Operating duration 6LR61 alkaline (vacuum operation) h	< 2500	up to 75		
Display	LCD 12 mm	LCD 12 mm		
Connection (stainless steel)	G 1/4 internal thread (DN 16 ISO-KF with adaptor, removable)	DN 16 ISO-KF		
PC interface	Mini USB-B connector	Mini USB-B connector		
Dimensions mm mm	60 x 120 x 50 (DN 10 ISO-KF) 60 x 120 x 28 (G 1/4)	60 x 120 x 61		
Protection class IP	40	40		
Weight (including battery) kg (lbs)	0.2 (0.44)	0.23 (0.51)		

Ordering Information

PIEZOVAC Sensor THERMOVAC Sensor

PV 101

TM 101

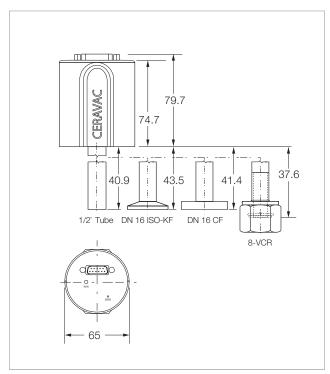
	Part No.	Part No.
Sensor Including AIMn battery, 9 V block 6LR 61	230 080 V01	230 081 V01
Accessory kit for VacuGraph Windows software including USB interface cable (2 m) protection case with foam insert and 15 V wall power supply for 100 – 260 V, 50/60 Hz mains and AlMn battery, 9 V block 6LR 61	230 082 V01	230 082 V01

Active Sensors

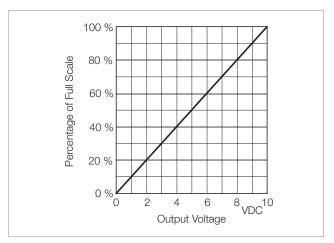
CERAVAC Transmitters CTR 100 N and CTR 101 N

CERAVAC Transmitter CTR 100 N (left) und CERAVAC Transmitter CTR 101 N (right)

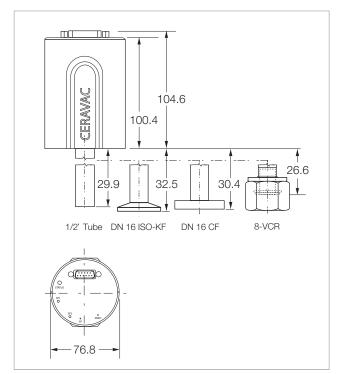
Advantages to the User


- Excellent accuracy and long-term stability
- Very good temperature compensation regardless of ambient conditions
- Highly resistant against corrosion and aggressive gases
- Fast and accurate response to pressure changes
- Improved reliability by high overpressure rating
- Serial Interface (RS 232 protocol)
- Zero adjust push button
- Optional heated (45 °C) version offers 2x better accuracy

INCONEL® is a registered trademark of Inco Alloys International, Inc.


Typical Applications

- General vacuum measurement and control with very low measurement uncertainty
- Fore and medium vacuum pressure measurement
- Research & Development
- System process control
- Chemical and Semiconductor processes
- LED and solar cell manufacturing
- Physical Vapor Deposition (PVD)
- Reference sensor for calibration systems


The CERAVAC transmitters with an advanced all-welded INCONEL® and stainless steel sensor and microprocessor-based electronics offer excellent accuracy and reproducibility. The CTR 100 N and CTR 101 N allow gas type independent pressure measurements and are able to tolerate bursts of pressure without suffering physical damage or calibration shifts. The robust sensor is suited for the most corrosive processes as the sensor is highly resistant to corrosion from common process chemicals. The sensor of the CTR 101 N is internally heated and regulated to 45 °C to offer full-scale pressure ranges from 1000 to 0.1 Torr.

Dimensional drawing for the CERAVAC Transmitter CTR 100 N (mm)

Characteristic of the CERAVAC Transmitter CTR 100 N and CTR 101 N $\,$

Dimensional drawing for the CERAVAC Transmitter CTR 101 N (mm)

Technical Data

CERAVAC Transmitter

		CTR 100 N	CTR 101 N	
		(Temperature Compensated)	(45 °C heated)	
Full scale (FS) / Measurement range		0,1 Torr / 1 x 10 ⁻⁵ – 0,1 Torr 1 Torr / 1 x 10 ⁻⁴ – 1 Torr	0,1 Torr / 1 x 10 ⁻⁵ – 0,1 Torr 1 Torr / 1 x 10 ⁻⁴ – 1 Torr	
		10 Torr / 1 x 10 - 1 10 Torr	10 Torr / 1 x 10 · – 1 Torr	
		20 Torr / 2 x 10 ⁻³ – 20 Torr	-	
		100 Torr / 0,01 - 100 Torr	100 Torr / 0,01 – 100 Torr	
		1000 Torr / 0,1 – 1000 Torr	1000 Torr / 0,1 – 1000 Torr	
Measurement uncertainty		0.2% ± temperature effect 0.5% ± temperature effect (0.1 Torr)	0.12% ± temperature effect 0.15% ± temperature effect (0.1 Torr)	
Sensor Measurement principle		INCONEL® membrane Capacitance diaphragm gauge		
Supply voltage	V DC	+14 t	o +30	
Power consumption	w	≤ 1	≤ 11 (at operating temperature ≤ 8)	
Electrical connection		15-pol.	Sub-D	
Analog output Measurement range	V	0 tc	10	
Interface		RS	232	
Setpoints		0	2	
Status indicators		LED		
Max. cable lenght	m	30		
Max. overrange pressure	bar (hPa)	3.1 (3100)		
Operating temperature range	°C (°F)	+15 to +50	+15 to +40	
Storage temperature range	°C (°F)	-20 to +80		
Max. bakeout temperature	°C (°F)	Not bakeable		
Max. rel. humidity	% n.c.	25 t	o 95	
Installation orientation		Ai	ny	
Wetted part material		INCONEL®, Sta	inless steel 316	
Dead volume, approx.	cm ³	6.3	29	
Gewicht	g (lbs)	513 (0.11)	669 (0.15)	
Protection class	IP	4	0	
CE certification		EMC Directive	2014/30/EEC	
Controller type		GRAPHIX ONE / TWO / THREE		
Temperature effects Zero of FS	%/°C	0,015 (1 Torr) 0,005 (0,1 Torr)		
Span of reading	%/°C	0,02 (0,1 Torr) 0.01 (1000/100/20/10/1 Torr)	0.01 (1000/100/10/1 Torr)	
		0.03 (0.1 Torr)	0.03 (0.1 Torr)	
Response time (10% to 90% FS)	ms	40 / 80 (1 Torr) / 120 (0.1 Torr)		

Ordering Information

CERAVAC Transmitter

	CTR 100 N	CTR 101 N	
	Part No.	Part No.	
DN 16 ISO-KF			
1000 Torr	230300V02	230320V02	
100 Torr	230301V02	230321V02	
20 Torr	230340V02	_	
10 Torr	230302V02	230322V02	
1 Torr	230303V02	230323V02	
0.1 Torr	230304V02	230324V02	
ON 16 CF-R			
1000 Torr	230305V02	230325V02	
100 Torr	230306V02	230326V02	
10 Torr	230307V02	230327V02	
1 Torr	230308V02	230328V02	
0.1 Torr	230309V02	230329V02	
Cajon 8-VCR			
1000 Torr	230310V02	230330V02	
100 Torr	230311V02	230331V02	
10 Torr	230312V02	230332V02	
1 Torr	230313V02	230333V02	
0.1 Torr	230314V02	230334V02	
/2" Tube			
1000 Torr	230315V02	230335V02	
100 Torr	230316V02	230336V02	
10 Torr	230317V02	230337V02	
1 Torr	230318V02	230338V02	
0.1 Torr	230319V02	230339V02	
Calibration	See Section "Miscellaneous", parag	raph "Leybold calibration service"	
Operating Units			
GRAPHIX ONE	23068	0V01	
GRAPHIX TWO	23068	1V01	
GRAPHIX THREE	230682V01		
Connection cable, Sub-D 15-way female			
o Sub-D 15-way male, shielded	Туре	· C	
5 m	124 55		
10 m	230 022		
15 m	124 56		
20 m	124 57		
30 m	124	58	

Linear Pressure Sensors DI/DU 200, DI/DU 201, DI/DU 2000, DI/DU 2001, DI/DU 2001 rel.

Piezo or capacitive pressure sensor based on ceramics technology. Available as absolute or relative pressure sensor.

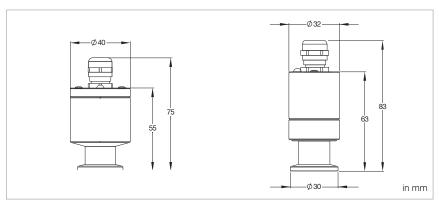
DI 200 (left) and DI 2000 (right), DU similar

Advantages to the User

- Absolute pressure ranges from
 0.1 to 200 mbar or 1 to 2000 mbar
- Relative pressure range from
 -1000 mbar to +1000 mbar
- Excellent overload characteristic due to the Al₂O₃ ceramics diaphragm
- Highly corrosion resistant
- Independent of the type of gas
- Vibration resistant
- 2-wire pressure sensor (DI)
- 4-wire pressure sensor (DU)
- Supply voltage range
 12 to 30 V DC (DI)
 14.5 to 30 V DC (DU)
- Linear output signal 4 to 20 mA (DI)
- Linear output signal 2 to 10 V (DU)
- Compact design
- Digital zero adjustment possible via pushbutton
- IP 54 rated stainless steel housing (DI/DU 200 und DI/DU 201),
 IP 54 rated aluminum housing (DI/DU 2000 und DI/DU 2001)
- DN 16 ISO-KF connection with female G 1/4" inside thread

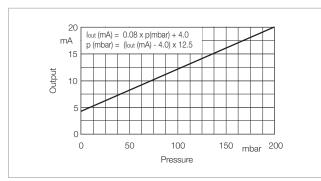
Typical Applications

- Pressure measurements in the rough vacuum range, and for corrosive media (Solar, coating)
- Chemical process engineering
- Vacuum packaging
- Drying processes
- Casting resin technology (degassing of potting compounds)
- Measurement of operating and filling pressure, during the production of lamps
- Filling systems for brake fluids (DI 201/DI 2001)
- Filling systems for refrigerants
- Measurement of pressure relative to atmospheric pressure (DI/DU 2001 rel.)

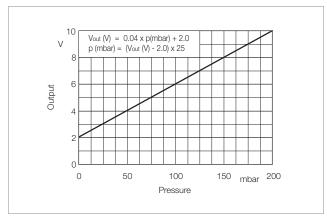

Operating Units for DU sensors

DISPLAY

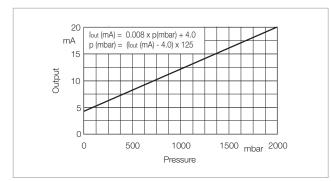
- ONE
- TWO
- THREE

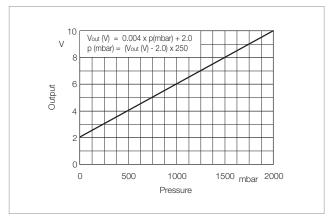

CENTER / GRAPHIX

- ONE
- TWO
- THREE



Dimensional drawing for the sensors


DI/DU 200 and DI/DU 201 (left), DI/DU 2000, DI/DU 2001 and DI/DU 2001 rel. (right)


Characteristic of the DI 200 and DI 201 Sensors

Characteristic of the DU 200 and DU 201 Sensors

Characteristic of the DI 2000 and DI 2001 Sensors

Characteristic of the DU 2000 and DU 2001 Sensors

Technical Data	DI/DU 200	DI/DU 201	DI/DU 2000	DI/DU 2001	DI/DU 2001 rel.
Measurement range mbar (Torr)		0.1 to 200 (0.075 to 150)	1 to 2000 (0.75 to 1500)	1 to 2000 (0.75 to 1500)	-1000 to +1000 (-750 to +750) relative pressure
Overload range, max. (flange side) bar	6	6	5	5	5
Nominal temperature range °C			0 to +60		
Measurement uncertainty 1) % FS	0.25	0.25	0.25	0.25	0.25 3)
Repeatability % FS			0.05		
Temperature error Zero drift % FS/10°K Sensitivity drift % FS/10°K			0.1 0.15		
Measurement principle, gas type independent	Capacitive	Capacitive	Piezoresistive	Piezoresistive	Piezoresistive
Sensing head supply DI DU			Two-wire system Four-wire system		
Output signal DI mA DU V			4 to 20 2 to 10		
Supply voltage Operating range DI V DC DU V DC			12 to 30 14.5 to 30		
Dead volume cm ²	3.9	3.9	1.8	1.8	1.8
Vacuum connection DN		J.	16 ISO-KF	ı	J.
Electrical connection DI DU			e plug 7pole, cable g FCC 68, cable (
Weight, approx. DI kg (lbs) DU kg (lbs)		0.36 (0.79) 0.34 (0.75)	0.26 (0.57) 0.24 (0.53)	0.26 (0.57) 0.24 (0.53)	0.26 (0.57) 0.24 (0.53)
Protection class IF			54		
Materials in contact with the medium	Stainless Steel 1.4305 Al ₂ O ₃ (96 %) Ceramics FPM (FKM)	Stainless Steel 1.4305 Al ₂ O ₃ (96 %) Ceramics EPDM	Stainless Steel 1.4305 Al ₂ O ₃ (96 %) Ceramics FPM (FKM)	Stainless Steel 1.4305 Al ₂ O ₃ (96 %) Ceramics EPDM	Stainless Steel 1.4305 Al ₂ O ₃ (96 %) Ceramics EPDM
Operating units DI series		J	_	ı	J
DU series ²⁾			LAY ONE, TWO, T TER ONE, TWO, T		

¹⁾ Sum of linearity, hysteresis and reproducibility

²⁾ May possibly require a firmware update

 $^{^{3)}}$ 0.25 % FS in the range of -1000 ... + 200 mbar / 0.5 % FS in the range of > +200 mbar

Ordering Information

DI/DU 200 DI/DU 201 DI/DU 2000 DI/DU 2001 DI/DU 2001 rel.

	Part No.	Part No.	Part No.	Part No.	Part No.
Linear sensor DI complete with 5 m long connection cable and connecting plug (circular connector)	158 12V01	158 14V01	158 13V01	158 15V01	245 000V01
Extension cable circular connector, 7-pole socket/plug 10 m 20 m			200 04 112 200 02 645		

Ordering Information

rel.

	Part No.	Part No.	Part No.	Part No.	Part No.
Linear sensor					
DU					
complete with 5 m long connection cable					
and connecting plug (FCC68)	230500V01	230501V01	230502V01	230503V01	230504V01
Extension cable FCC68,		J			J
socket/plug					
10 m			230505V01		
20 m			230506V01		
Operating unit					
GRAPHIX ONE / TWO / THREE	please s	ee chapter "Contr	oller and Operatin	g Units for Active	Sensors"
DISPLAY ONE / TWO / THREE	please s	ee chapter "Contr	oller and Operatin	g Units for Active	Sensors"

THERMOVAC Transmitter TTR 91 N (S), TTR 96 N, TTR 911 N (C), TTR 916 N

THERMOVAC Transmitter TTR N analog (left); digital RS232 (middle), with Display (right)

Advantages to the User

- Very robust MEMS-Pirani solid state sensor resilient to vibration and shock venting
- Extended measuring range up to 5 x 10⁻⁵ mbar and significantly higher accuracy compared to conventional sensors
- Reduced response times because of significantly improved signal processing
- High accuracy
- Individually temperature compensated to ensure stable measurements
- High reproducibility
- Measurement signal insensitive to mounting position
- Robust stainless steel housing
- Available with display for pressure units, set point parameters and operation status
- Available with up to three set point relays for improved process control
- Optional Computer interface: RS 232
- Long tube version for reaching higher chamber bakeout temperatures
- LED ring to indicate status of the sensor

Parylene HT® is a registered trademark of Speciality Coating Systems Inc.

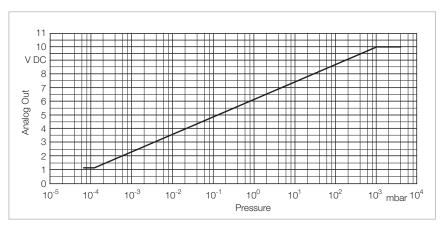
Typical Applications

The THERMOVAC Transmitters offer a high degree of versatility. They are suited for applications in the medium and rough vacuum range.

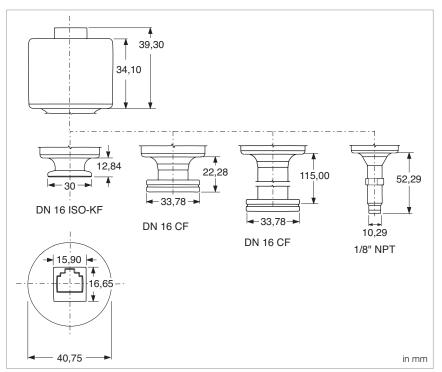
Typical applications are:

- Analytical instrumentation
- Research and development
- Vacuum Drying
- Controlling of ionization gauges
- Activation of UHV gauges
- System process control
- Process industry
- Coated versions for improved chemical resistance
- General foreline vacuum measurement

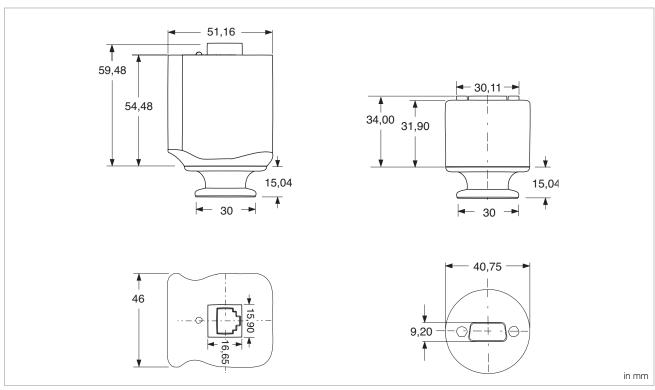
The THERMOVAC Transmitters are active sensors using the unique MEMS-Pirani technology (Micro-Electro-Mechanical-Systems). They offer analog voltage output and the S-versions offer set point relays for improved process control. For chemical and aggressive applications, the C-versions are equipped with a Parylene HT®-coated sensor. The THERMOVAC series is also equipped with a LED-ring (360°) showing the status of the sensor.


The TTR 911 N and 916 N have a touch display and/or digital interfaces available.

Sensor


The THERMOVAC transmitters' measurement principle is based on thermal conductivity. The transmitters are equipped with a MEMS-Pirani sensing cell that consists of a silicon chip with a heated resistive element.

The THERMOVAC transmitters with the coated MEMS-Pirani are well suited for harsh processes and therefore more robust than the uncoated versions. Built-in relays allow switching functions to be performed directly by the transmitter, without the need of a programmable control.


An integration of the transmitters in programmable control systems is facilitated by the linear characteristic, which can be defined by entering a simple equation into a PLC or computer.

Characteristic of the THERMOVAC Transmitters TTR 91 N (S) / TTR 96 N and TTR 911 N (C) / TTR 916 N

Dimensional drawings for the THERMOVAC Transmitters TTR 91 N (S) / TTR 96 N (Middle left – DN 16 CF standard version, middle right backable with elongated flange)

Dimensional drawings for the THERMOVAC Transmitters TTR 911 N (C) / TTR 916 N left: with display, right: with RS 232

Technical Data

THERMOVAC Transmitter

		TTR 91 N	TTR 91 N S	TTR 96 N S	
Measurement range	mbar (Torr)	5.0 x 10 ⁻⁵ t	o Atmosphere (3.75 x 10 ⁻⁵ to A	Atmosphere)	
Measurement uncertainty of reading (typical) 1)	mbar	5 x 10 ⁻⁴ to 1 x 10 ⁻³ ±10 % 1 x 10 ⁻³ to 100 ±5 % 100 to atm ±25 %			
Repeatability of reading (typical) 1)	mbar	1 x 10 ⁻³ to 100 ±2 %			
Sensor		MEMS-Pirani	MEMS-Pirani	Coated MEMS-Pirani	
Measurement principle		Thermal conductivity according to Pirani			
Supply voltage	V DC	9 to 30			
Power consumption	W		< 1.2		
Electrical connection	V	FCC 68	, RJ45 (analog) / Sub-D 15 Pll	N (digital)	
Analog output Resolution Impedance Update rate	V DC bit Ω Hz	$V_{out} = log10 (P_{mbar}) \times 1.286 + 6.143$ 0.61 to 10 16 100 16			
Interfaces		FCC	68, RJ45 (analog) / RS232 (c	ligital)	
Set point Range Relay	mbar (Torr)	2,7 x 10 ⁻⁴ to 1000 (2.0 x 10 ⁻⁴ to 750) 0	2,7 x 10 ⁻⁴ to 1000 (2.0 x 10 ⁻⁴ to 750) 2	2,7 x 10 ⁻⁴ to 1000 (2.0 x 10 ⁻⁴ to 750)	
Relay contact rating		1 A at 30 V AC / DC, resistive load	1 A at 30 V AC / DC, resistive load	1 A at 30 V AC / DC, resistive load	
Relay contact resistance, max. Relay contact endurance, min. 1.0 A at 30 V DC load 0.2 A at 30 V DC load	mΩ	100 100 000 2 000 000	100 100 000 2 000 000	100 100 000 2 000 000	
Status indicators			LED-ring (360°)		
Max. cable length	m		100		
Overpressure limit (abs.)	bar		6 (10 bar for inert gases)		
Operating temperature range 2)	°C (°F)		0 to 60 (32 to 140)		
Storage temperature range	°C (°F)		-20 to +65 (-4 to 149)		
Max. bakeout temperature	°C (°F)	85 (185), non-	operating [bakeable version u	p to 250 (482)]	
Max. rel. humidity	% n.c.		≤ 95		
Installation orientation			Any		
Materials exposed to vacuum		304 stainless steel, Tin, Gold, Viton®	304 stainless steel, Tin, Gold, Viton®	304 stainless steel, Viton®, Parylene-HT®	
Dead volume (DN 16 ISO-KF)	cm ³		2.80		
Weight (DN 16 ISO-KF)	g	170			
Protection class	IP	40			
CE certification		EMC Directive 2014/30/EEC			
Controller type		DISPLAY ONE / TWO / THREE and GRAPHIX ONE / TWO / THREE			

Accuracy and repeatability are typical values measured with Nitrogen gas at ambient temperature after zero adjustment

 $^{^{2)}}$ $\,$ There may be minimal deviation tolerances in the range of 40 – 60 $^{\circ}\text{C}$

Ordering Information

THERMOVAC Transmitter TTR 91 N (S) / TTR 96 N

n Service"

¹⁾ See chapter "Connection cables for Active Sensors"

Technical Data

THERMOVAC Transmitter TTR 911 N (C/S) / TTR 916 N

		1111 311 N (0/3) / 1111 310 N
Measurement range	mbar (Torr)	5.0×10^{-5} to Atmosphere (3.75 x 10^{-5} to Atmosphere) 1.0 x 10^{-5} to Atmosphere (0.75 x 10^{-6} to Atmosphere) [RS 232 / Display]
Measurement uncertainty	mbar	5 x 10 ⁻⁴ to 1 x 10 ⁻³ ±10 %
of reading (typical) 1)		1×10^{-3} to $100 \pm 5 \%$
		100 to atm ±25 %
Repeatability of reading (typical) 1)	mbar	1 x 10 ⁻³ to 100 ±2 %
Sensor		MEMS-Pirani
Measurement principle		Thermal conductivity according to Pirani
Supply voltage	V DC	9 to 30
Power consumption	W	< 1.2
Electrical connection	V	FCC 68, RJ45 (analog) / Sub-D 15 PIN (digital)
Analog output		$V_{out} = log10 (P_{mba}) \times 1.286 + 6.143$
Resolution	V DC	0.61 to 10 16
Impedance	bit Ω	100
Update rate	Hz	16
Interfaces		FCC 68, RJ45 (analog) / RS232 (digital)
Set point		
Range	mbar (Torr)	+1.0 x 10 ⁻⁴ to 1000 (0.75 x 10 ⁻⁵ to 750)
		2.7 x 10 ⁻⁴ to 1000 (2.0 x 10 ⁻⁴ to 750) [RS 232 / Display]
Relay		2 [Profibus / Display] / 2 [RS 232]
Relay contact rating Relay contact resistance, max.	mΩ	1 A at 30 V AC/ DC, resistive load
Relay contact resistance, max.	11125	100
1.0 A at 30 V DC load		100 000
0.2 A at 30 V DC load		2 000 000
Status indicators		LED-ring (360°)
Max. cable length	m	100
Overpressure limit (abs.)	bar	6 (10 bar for inert gases)
Operating temperature range 2)	°C (°F)	0 to 60 (32 to 140)
Storage temperature range	°C (°F)	-20 to +65 (-4 to 149)
Max. bakeout temperature	°C (°F)	85 (185), non-operating
Max. rel. humidity	% n.c.	0 – 95
Installation orientation		Any
Materials exposed to vacuum		304 stainless steel, Tin, Gold, Viton®, Parylene-HT® (coated)
Dead volume (DN 16 ISO-KF)	cm ³	2.80
Weight (DN 16 ISO-KF)	g	168
Protection class	IP	40
CE certification		EMC Directive 2014/30/EEC
Controller type		DISPLAY ONE / TWO / THREE and GRAPHIX ONE / TWO / THREE

¹⁾ Accuracy and repeatability are typical values measured with Nitrogen gas at ambient temperature after zero adjustment

 $^{^{\}mbox{\tiny 2)}}$ There may be minimal deviation tolerances in the range of 40 – 60 $^{\circ}\mbox{C}$

Ordering Information

THERMOVAC Transmitter TTR 911 N (C/S) / TTR 916 N

	` <i>'</i>
	Part No.
TTR 911 N S, DN 16 ISO-KF, RS 232	89660V02
TTR 911 N, DN 16 ISO-KF, with display, FCC 68 / RJ 45	89654V02
TTR 916 N C, DN 16 ISO-KF, Parylene coated, FCC 68 / RJ 45	89656V02
Replacement sensor, DN 16 ISO-KF TTR 911 N, without Parylene coating TTR 916 N SC, TTR 911 NC, with Parylene coating	230650V02 230651V02
Calibration	see chapter "Miscellaneous", para. "Leybold Calibration Service"
Operating Units DISPLAY ONE DISPLAY THREE GRAPHIX ONE GRAPHIX TWO GRAPHIX THREE	230 001 230 025 230680V01 230681V01 230682V01
Connection cable, FCC 68 on both ends ¹⁾ 5 m 10 m 15 m 20 m 30 m 50 m 75 m 100 m	Type A 124 26 230 012 124 27 124 28 124 29 124 31 124 32
Optional accessories Spiral tube DN 16 ISO-KF RS232 / USB Converter for	230 082
setpoint definition of RS232 gauges	230399V02

¹⁾ See chapter "Connection cables for Active Sensors"

THERMOVAC Transmitter TTR 91 R

THERMOVAC Transmitter TTR 91 R

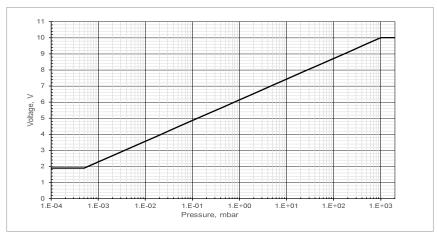
Complementary to the proven range of THERMOVAC TTR gauges, the new TTR 91 R provides an extended capacity for usage in dirty processes without any loss of the high quality expected from products of the THERMOVAC series.

The compact and robust design with an overpressure limit of 9 bar (gauge), removable housing allowing bakeout up to 150 °C, and metal sealings make the TTR 91 R suitable for a wide range of applications.

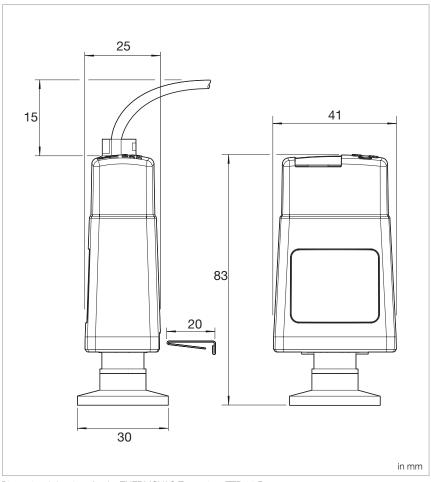
Advantages to the User

- Very robust heated filament, suitable for harsher processes
- Measuring range up to 5 x 10⁻⁴ mbar
- Less sensitive on particle contamination than MEMs technology
- Easily exchangeable measurementtube
- High accuracy
- Removable electronics housing allows bakeout up to 150 °C
- Glass-metal sealed
- High overpressure limit of 10 bar abs.
- High reproducibility
- Measurement signal insensitive to mounting position
- LED to indicate status of the sensor
- Integrated set point (transistor)

Typical Applications


The THERMOVAC Transmitters offer a high degree of versatility. They are suited for applications in the medium and rough vacuum range.

Typical applications are:


- Chemical/Chemistry processes
- Heat Treatment/Metallurgy
- Automotive Industry
- Space Simulation
- Analytical
- Refrigeration and Air conditioning
- Chemistry / Research laboratories
- High vacuum pump systems
- Mechanical Engineering
- Process Industry

Sensor

The THERMOVAC transmitters' measurement principle is based on thermal conductivity. The transmitter has a Pirani sensing cell equipped with a Tungsten / Rhenium filament. Integration of the transmitters in programmable control systems is faciliated by the linear characteristic, which can be defined by entering a simple equation into a PLC or computer.

Characteristic of the THERMOVAC Transmitter TTR 91 R

Dimensional drawings for the THERMOVAC Transmitter TTR 91 $\ensuremath{\text{R}}$

Technical Data

THERMOVAC Transmitter TTR 91 R

Measurement range	mbar (Torr)	5.0×10^{-4} to Atmosphere (3.75 x 10 ⁻⁴ to Atmosphere)
Measurement uncertainty		
of reading (typical) 1)	mbar	±15 % at < 100 mbar
Repeatability of reading (typical) 1	mbar	1 x 10 ⁻³ to 100 ±2 %
Sensor measurement principle		Thermal conductivity, heated filament
Supply voltage	V DC	15 to 30
Power consumption	W	1
Electrical connection	V	FCC 68, RJ45 8-way (analog)
Analog output		$V_{out} = log10 (P_{mbar}) \times 1.286 + 6.143$
Sensor	V DC	1.9 to 10
Sensor fail	V	0.5
Min. load impedance	kΩ	10
Max. output current	mA	1
•	110 (<u>'</u>
Interfaces		n.a.
Set point		1 (Transistor, max. load 100 mA)
Status indicators		Integrated LED
Max. cable length	m	100 (type A)
Overpressure limit (abs.)	bar	10
Operating temperature range 2)	°C (°F)	5 to 60 (41 to 140)
Storage temperature range	°C (°F)	-30 to +70 (-22 to 158)
Filament temperature	°C (°F)	100 (212) above ambient
Max. bakeout temperature	°C (°F)	150 (302), (with electronics housing removed)
Humidity		80 % RH up to 31 °C decreasing linearly to 50 % RH at 40 °C and above
Installation orientation		Any
Materials exposed to vacuum Filament Tube Filter others		Tungsten / Rhenium Stainless steel 316L and 304L Stainless steel Glass, Ni, NiFe, Stainless steel
Internal volume of tube	cm ³	5
Weight (DN 16 ISO-KF)	g	85
Protection class	IP	40
CE certification		EMC Directive 2014/30/EEC
Controller type		DISPLAY ONE / TWO / THREE and GRAPHIX ONE / TWO / THREE

Accuracy and repeatability are typical values measured with Nitrogen gas at ambient temperature after zero adjustment

There may be minimal deviation tolerances in the range of $40-60\,^{\circ}\text{C}$

Ordering Information

THERMOVAC Transmitter TTR 91 R

	Part No.
TTR 91 R, DN 16 ISO-KF	230049V01
Replacement tube TTR 91 R, DN 16 ISO-KF	E02601801
Calibration	see chapter "Miscellaneous", para. "Leybold Calibration Service"
Operating Units DISPLAY ONE DISPLAY THREE GRAPHIX ONE GRAPHIX TWO GRAPHIX THREE	230 001 230 025 230680V01 230681V01 230682V01
Connection cable, FCC 68 on both ends ¹⁾ 5 m 10 m 15 m 20 m 30 m 50 m 75 m 100 m	Type A 124 26 230 012 124 27 124 28 124 29 124 31 124 32
Optional accessories Spiral tube DN 16 ISO-KF Centering Rings (Stainless Steel 1.4305) with O-Ring, DN 16 ISO-KF Centering Rings (Stainless Steel) with Sintered Metal Filter, DN 16 ISO-KF Clamping Rings (Aluminum), DN 16 ISO-KF Centering Ring with fine filter DN 16 ISO-KF	230082 88346 88351 18341 88396

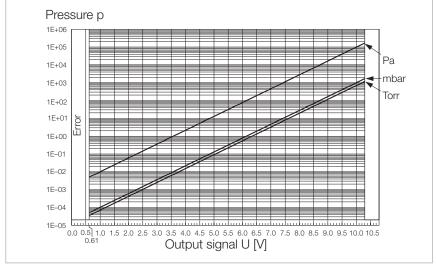
¹⁾ See chapter "Connection cables for Active Sensors"

THERMOVAC Transmitters TTR 101 / TTR 101 S2 / TTR 101 S2 PB

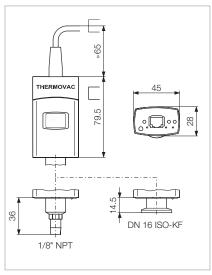
The Pirani Capacitance Diaphragm Gauge is the first vacuum gauge which combines ceramic capacitance diaphragm and thermal conductivity technologies. The Leybold TTR 101 offers superior accuracy and gas type independent readings between 10 mbar and 1500 mbar.

Advantages to the User

- Large display range 5 x 10⁻⁵ to 1500 mbar
- Gas type independent above
 10 to 1500 mbar
- Available optional display, or with up to two integrated setpoints
- Easy to exchange plug & play sensor element with on-board calibration data - guarantees high reproducibility and low cost of ownership
- Compact design
- LED signal for set point relay status
- Rapid cycling
- NRTL, ETL, RoHs and WEEE standards


Typical Applications

- General vacuum measurement and control from low to the high vacuum range
- Forevacuum pressure measurement
- Safety circuits in vacuum systems
- Load lock control
- Control of high vacuum ionization gauge


Option

Dust and other particles may cause increasing measurement errors and reduced lifetime. Therefore we recommend the installation of a fine filter in critical applications.

Fine filters are listed in chapter "General", para. "Connection Accessories for Small Flanges".

Kennlinie des THERMOVAC-Transmitters TTR 101 (S2)

Maßzeichnung des TTR 101 (S2)

Technical Data

THERMOVAC Transmitter TTR 101 / TTR 101 S2 / TTR 101 S2 PB

Measurement principle 10 to 1500 mbar (7.5 to 1125 To 1 to 10 mbar (0.75 to 7.5 Torr) 5 x 10 ⁻⁴ to 1 mbar (3.75 x 10 ⁻⁴ to	,	Capacitive diaphragm sensor Mixed range Thermal conductivity acc. to Pirani
Display range	mbar (Torr)	5 x 10 ⁻⁵ to 1500 (3.8 x 10 ⁻⁵ to 1125)
Measurement range	mbar (Torr)	5 x 10 ⁻⁴ to 1500 (3.8 x 10 ⁻⁴ to 1125)
Measurement uncertainty (N ₂)		
5 x 10 ⁻⁴ to 1 x 10 ⁻³ mbar		± 50% of reading
1 x 10 ⁻³ to 100 mbar		± 15% of reading
100 to 950 mbar		± 5% of reading
950 to 1050 mbar		± 2,5% of reading
Repeatability (N ₂)		
1 x 10 ⁻³ to 1100 mbar		± 2% of reading
Output signal (measurement signal)	
Voltage range		0 to 10.23 V
Measurement range		+0.61 to +10.23 V
Error signal		0 V (factory default)
Relationship between voltage ar	nd pressure	1.286 V / decade, logarithmic
Output impedance		2 x 4.7 Ohm, short circuit-proof
Load impedance		> 10 kΩ
Response time		< 30 ms
Transmitter identification		71.5 kΩ
HV transmitter alignment		at < 10⁵ mbar
ATM transmitter alignment		at > 100 mbar
Semiconductor relay		Switching thresholds SP 1/2
Adjustment range (N ₂)		5.0 x 10 ⁻⁵ to 1500 mbar
Hysteresis		10% of the threshold
Switching characteristic		Low trip point
Contact rating		< 30 V AC/DC, # 0.3 A resistive
closed		LED on
open		LED off
Switching time		< 30 ms

Further Technical Data

THERMOVAC Transmitter

TTR 101 / TTR 101 S2 / TTR 101 S2 PB

Supply voltage		Class 2 / LPS
	V DO	
at the transmitter	V DC	+15 to +30
Ripple		$< 1 V_{ss}$
Power consumption	W	≤ 2.5
Fuse to connect ahead		1 AT
Electrical connection		FCC 68 socket
Measurement cord		with shield: 0.14 mm2/ wire
Cable length	m	≤ 100
Earthing concept		> "Electrical connection"
Vacuum connection and signal	earth	connected via 10 kV, 10 nF
Materials exposed to vacuum		
Vacuum connection		Stainless steel 1.4435
Heating filament		W
Vacuum feedthrough		Glass
Orifice (for DN 16 ISO-KF only)		Stainless steel
Diaphragm		Ceramic
Further materials		Ni, NiFe, Stainless steel 1.4301, SnAg
Internal volume		
DN 16 ISO-KF	cm ³	4.7
1/8» NPT	cm ³	5.2
Admissible pressure	bar (abs.)	≤ 5
Burst pressure	bar (abs.)	10
Admissible temperature	, ,	
Operation (ambient)	°C	+10 to +50
Bakeout at flange 1), max.	°C	≤ 80
Heating filament	°C	< 160
Storage	°C	-20 to +6
Relative humidity		
Annual average		≤ 65% (non condensing)
on 60 days		≤ 85% (non condensing)
Mounting orientation		Horizontal and vertical
Use		Indoors only, altitudes up to 2000 m (6562 ft.)
Protection class	IP	40
		<u> </u>
Weight	kg (lbs)	0.120 (0.265)

For horizontal installation. While baking out, the technical data for measurement range, inaccuracy and repeatability may deviate

Ordering Information

THERMOVAC Transmitter TTR 101 / TTR 101 S2 / TTR 101 S2 PB

	Part No.
THERMOVAC TTR 101	
without switching threshold	
without Display	
DN 16 ISO-KF	230 350 V01
1/8" NPT	230 351 V01
with Display	
DN 16 ISO-KF	230 354 V01
1/8" NPT	230 355 V01
THERMOVAC TTR 101 S2	
with two switching thresholds	
without Display	
DN 16 ISO-KF	230 352 V01
1/8" NPT	230 353 V01
with Display	
DN 16 ISO-KF	230 356 V01
1/8" NPT	230 357 V01
THERMOVAC TTR 101 S2 PB	
with two switching thresholds	
without Display	
DN 16 ISO-KF	230 358 V01
with Display	
DN 16 ISO-KF	230 360 V01
Replacement sensor	
DN 16 ISO-KF	230 361 V01
1/8" NPT	230 362 V01
Centering ring with fine filter DN 16 ISO-KF	883 96
Calibration	see chapter "Miscellaneous", para. "Leybold Calibration Service"
Connection cable, FCC 68 on both ends,	
8-way, shielded	Type A
5 m	124 26
10 m	230 012
15 m	124 27
20 m	124 28
30 m	124 29
50 m	124 31
75 m	124 32
100 m	124 33
Accessories, optional	
Spiral tube DN 16 ISO-KF	230 082

PENNINGVAC Transmitter PTR 90 N

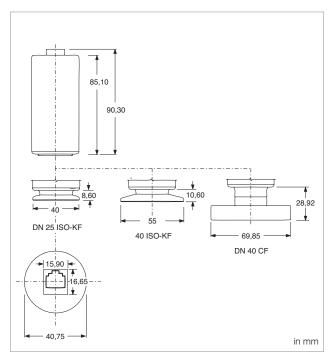
PENNINGVAC Transmitter PTR N analog (left); digital (middle), with Display (right)

The PENNINGVAC transmitter combines the cold cathode ionization principle with the MEMS-Pirani sensor. This allows the complete coverage of the measurement range from 1 x 10⁻⁸ mbar to atmosphere by a single transmitter. The compact design, broad measurement range and cost efficiency make this transmitter the perfect gauge for several applications.

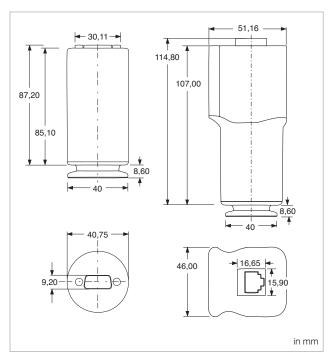
Advantages to the User

- Enhanced reliability through automatically turning on the cold cathode by the MEMS-Pirani
- Significantly higher accuracy in the upper range by using the MEMS Pirani
- Longer lifetime due to low cold cathode turn on pressure
- High reproducibility
- Available with display for pressure units, set point parameters and operation status
- Wide measurement range combining two sensor technologies into a single output
- Ease of serviceability by modular design of the cold cathode
- Automatic zeroing during pump down cycle for improved accuracy
- LED ring to indicate status of the sensor
- Measurement signal insensitive to mounting position

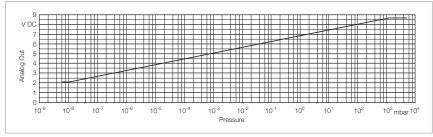
Typical Applications


Typical Applications within the measurement range from 1 x 10^{-8} mbar to atmosphere are:

- General vacuum base pressure measurement
- Sputtering and coating technology
- Analytical technology (e. g. mass spectrometer control)
- Vacuum Furnaces
- Multipurpose pressure measurement and control up to the high vacuum range
- Metallurgy
- Scanning electron microscopes
- Process industry


Option

For protection of the sensor PTR 90 N against contamination, radiation and other disturbing factors the installation of a baffle is recommended.


Two types of baffles are available: A build-in version for CF connections is mounted in the sensor; the baffle for ISO-KF connections is integrated in a centering ring.

Dimensional drawing for the PENNINGVAC transmitters PTR 90 N, RS 232 (left) and PTR 90 N $\,$

Characteristics of the PENNINGVAC Transmitters PTR 90 N

PENNINGVAC Transmitter PTR 90 N

Measurement range	mbar (Torr)	1.0 x 10 ⁻⁸ to 1000 (0.75 x 10 ⁻⁸ to 750)	
Measurement uncertainty			
of reading (typical) 1)			
Cold cathode	mbar	1×10^{-8} to $5 \times 10^{-4} \pm 30 \%$	
MEMS Pirani	mbar	$5 \times 10^{-4} \text{ to } 1 \times 10^{-3} \pm 10 \%$	
		1×10^{-3} to $100 \pm 5 \%$	
		100 to 1000 ±25 %	
Repeatability of reading (typical) 1)	mbar	1 x 10 ⁻³ to 100 ±2 %	
ensor Cold cathode and MEMS Pirani			
Measurement principle		Cold cathode ionization and thermal conductivity	
Supply voltage	V DC	9 to 30	
Power consumption	W	< 2	
Electrical connection	V	FCC 68, RJ 45 (analog) /	
		RS232 (digital)	
Analog output		$V_{out} = log \ 0.6 \ (P_{mbar}) + 6.8$	
	V DC	2.0 to 8.668 / 2.0 to 8.667 [RS 232]	
Resolution	bit	16	
Impedance	Ω	100	
Update rate	Hz	16	
Interfaces		FCC 68, RJ45 (analog) /	
Cat waint		RS232 (digital)	
Set point	mbar (Torr)	1.0 x 10 ⁻⁸ to 1000 (0.75 x 10 ⁻⁸ to 750)	
Range Relay	mbar (1011)	0 / 2 [RS 232]	
Relay contact rating		1 A at 30 V AC / DC, resistive load	
Relay contact rating Relay contact resistance, max.	mΩ	100	
Relay contact resistance, max.	11132	100	
1.0 A at 30 V DC load		100 000	
0.2 A at 30 V DC load		2 000 000	
Status indicators		LED-ring (360°)	
Max. cable length	m	100	
Overpressure limit (abs.)	bar	6	
Operating temperature range 2)	°C (°F)	0 to 60 (32 to 140)	
Storage temperature range	°C (°F)	-20 to +65 (-4 to 149)	
Max. bakeout temperature	°C (°F)	85 (185)	
Max. rel. humidity	% n.c.	0 – 95	
Installation orientation		Any	
Materials exposed to vacuum		304 stainless steel, 403 stainless steel, Ceramic (${\rm Al_2O_3}$),Tin, Gold, Viton®, Titanium	
Dead volume (DN 25 ISO-KF), approx	cm ³	28.6	
Weight (DN 25 ISO-KF)	g	321	
Protection class	IP	40	
CE certification		EMC Directive 2014/30/EEC	
Controller type		DISPLAY ONE / TWO / THREE and GRAPHIX ONE / TWO / THREE	

¹⁾ Accuracy and repeatability are typical values measured with Nitrogen gas at ambient temperature after zero adjustment

 $^{^{2)}}$ There may be minimal deviation tolerances in the range of 40 – 60 $^{\circ}\text{C}$

Ordering Information

PENNINGVAC Transmitter PTR 90 N

	Part No.	
PTR 90 N, DN 25 ISO-KF, FCC 68 / RJ 45	230070V02	
PTR 90 N, DN 25 ISO-KF, Display, FCC 68 / RJ 45	230085V02	
PTR 90 N, DN 25 ISO-KF, 2 SP, RS 232	230088V02	
PTR 90 N, DN 40 ISO-KF, FCC 68 / RJ 45	230071V02	
PTR 90 N, DN 40 CF, FCC 68 / RJ 45	230072V02	
Replacement cathode plate for PTR 90 N / PTR 225 N (up to serial no. 17022777352) for PTR 90 N / PTR 225 N (from serial no. 17022777353)	*) EK16292V02	
Replacement anode ring for PTR 90 N / PTR 225 N (up to serial no. 17022777352) for PTR 90 N / PTR 225 N (from serial no. 17022777353)	*) E20028712V02	
Baffle, with centering ring (FPM (FKM)) DN 25 ISO-KF DN 40 ISO-KF	230 078 230 079	
Calibration	see chapter "Miscellaneous", para. "Leybold Calibration Service"	
Operating Units DISPLAY ONE DISPLAY THREE GRAPHIX ONE GRAPHIX TWO GRAPHIX THREE	230 001 230 025 230680V01 230681V01 230682V01	
Connection cable, FCC 68 on both ends 1)	Type A	
5 m	124 26	
10 m 15 m	230 012 124 27	
20 m	124 28	
30 m	124 29	
50 m	124 31	
75 m	124 32	
100 m	124 33	
Connection cable, RS 232 1)	Туре G	
5 m	230550V01	
10 m	230551V01	
15 m	230552V01	
20 m	230553V01	
RS232 / USB Converter for setpoint definition of RS232 gauges	230399V02	

^{*)} Please contact leybold for the correct replacement

¹⁾ See chapter "Connection cables for Active Sensors"

PENNINGVAC Transmitters PTR 225 N, PTR 237 N

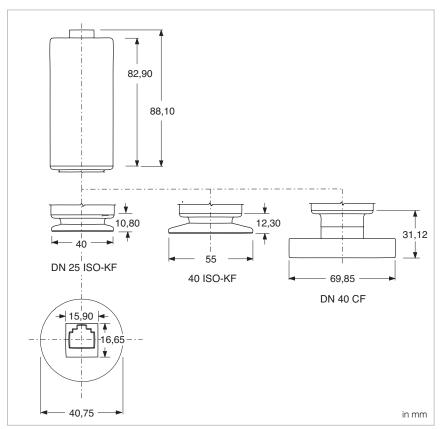
PENNINGVAC Transmitter PTR 225 N analog (left), PTR 225 N digital (middle), PTR 237 N analog (right)

The PENNINGVAC Transmitters are based on the cold cathode measurement principle. The compact design and broad measuring range of the PTR 225 N, makes it well suited for easy system integration and process control from medium to high vacuum pressure. Options include various serial interfaces and programmable setpoint relays, making it an ideal transmitter for control systems.

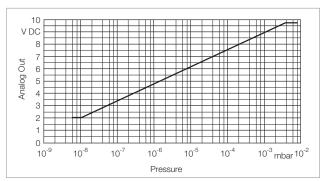
Advantages to the User

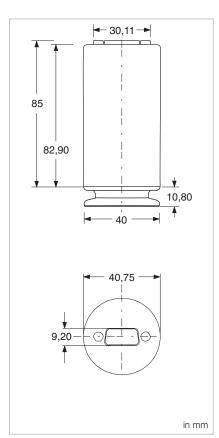
- Good performance to price ratio
- Available with up to three setpoints
- Ease of serviceability by modular design of the cold cathode
- High reproducibility and high accuracy
- Available with display for pressure units, set point parameters and operation status
- LED ring to indicate status of the sensor
- Measurement signal insensitive to mounting position
- Optional Computer interface: BS 232

Typical Applications


- Analytical Instrumentation
- Scanning electron microscopes
- Evaporation and sputtering systems
- High vacuum systems
- Coating systems
- Vacuum furnaces
- Cryo processes
- Systems control in the medium and high vacuum range

Option


For protection the PTR sensors against contamination, radiation and other disturbing factors the installation of a baffle is recommended.


Baffle DN 25 ISO-KF, with centering ring, Part No. 230 078

Dimensional drawing for the PENNINGVAC transmitters PTR 225 N and PTR 237 N

Characteristic of the PENNINGVAC transmitters PTR 225 S/237

Dimensional drawing for the PENNINGVAC transmitter PTR 225 N, RS 232

PENNINGVAC Transmitter PTR 225 N / PTR 237 N

		F111 225 N / F111 20/ N	
Measurement range	mbar (Torr)	1.0 x 10 ⁻⁸ to 5 x 10 ⁻³ (0.75 x 10 ⁻⁸ to 3.75 x 10 ⁻³) 1.0 x 10 ⁻⁸ to 6.7 x 10 ⁻³ (0.75 x 10 ⁻⁸ to 5.0 x 10 ⁻³) [RS 232]	
Measurement uncertainty		1.0 x 10 · 10 0.7 x 10 · (0.73 x 10 · 10 3.0 x 10) [n3 232]	
of reading (typical) 1) Cold Cathode	mbar	1×10^{-8} to $1 \times 10^{-3} \pm 30 \%$	
Repeatability of reading (typical) 1)	mbar	1 x 10 ⁻⁸ to 1 x 10 ⁻³ ±30 %	
Sensor		Cold cathode	
Measurement principle		Cold cathode ionization	
Supply voltage	V DC	9 to 30	
Power consumption	W	< 2	
Electrical connection	V	FCC 68 / RJ 45, RS 232	
Analog output		$V_{out} = 1.33 \times log 10 (P_{mbar}) + 12.66$	
Decelution	V DC	2.0 to 9.6	
Resolution Impedance	bit Ω	16 100	
Update rate	Hz	16	
Interfaces		FCC 68 / RJ 45	
Set point			
Range	mbar (Torr)	1 x 10 ⁻⁸ to 5 x 10 ⁻³ (0.75 x 10 ⁻⁸ to 3.75 x 10 ⁻³)	
Relay		2 [RS 232)	
Relay contact rating		1 A at 30 V AC / DC, resistive load	
Relay contact resistance, max.	mΩ	100	
Relay contact endurance, min.		100,000	
1.0 A at 30 V DC load 0.2 A at 30 V DC load		100 000 2 000 000	
Status indicators		LED-ring (360°)	
Max. cable length	m	100	
Overpressure limit (abs.)	bar	6	
Operating temperature range 2)	°C (°F)	0 to 60 (32 to 140)	
Storage temperature range	°C (°F)	-20 to +65 (-4 to 149)	
Max. bakeout temperature	°C (°F)	85 (185)	
Max. rel. humidity	% n.c.	0 – 95	
Installation orientation		Any	
Materials exposed to vacuum		304 stainless steel, 403 stainless steel, Ceramic (Al_2O_3), Viton®, Titanium	
Dead volume (DN 25 ISO-KF), approx	cm ³	25.6	
Weight (DN 25 ISO-KF)	g	318	
Protection class	IP	40	
CE certification		EMC Directive 2014/30/EEC	
Controller type		DISPLAY ONE / TWO / THREE and GRAPHIX ONE / TWO / THREE	

¹⁾ Accuracy and repeatability are typical values measured with Nitrogen gas at ambient temperature after zero adjustment

 $^{^{\}mbox{\tiny 2)}}$ There may be minimal deviation tolerances in the range of 40 – 60 $^{\mbox{\tiny o}}\mbox{C}$

Ordering Information

PENNINGVAC Transmitter PTR 225 N / PTR 237 N

	Part No.
PTR 225 N, DN 25 ISO-KF, FCC 68 / RJ 45	15734V02
PTR 225 N, DN 25 ISO-KF, 3 SP, RS 232	89642V02
PTR 237 N, DN 40 CF, FCC 68 / RJ 45	15736V02
Replacement cathode plate for PTR 90 N / PTR 225 N (up to serial no. 17022777352) for PTR 90 N / PTR 225 N (from serial no. 17022777353)	*) EK16292V02
Replacement anode ring for PTR 90 N / PTR 225 N (up to serial no. 17022777352) for PTR 90 N / PTR 225 N (from serial no. 17022777353)	*) E20028712V02
Baffle, with centering ring (FPM (FKM)) DN 25 ISO-KF	230 078
Calibration	see chapter "Miscellaneous", para. "Leybold Calibration Service"
Operating Units DISPLAY ONE DISPLAY THREE GRAPHIX ONE GRAPHIX TWO GRAPHIX THREE	230 001 230 025 230680V01 230681V01 230682V01
Connection cable, FCC 68 on both ends ¹⁾ 5 m 10 m 15 m 20 m 30 m 50 m 75 m 100 m	Type A 124 26 230 012 124 27 124 28 124 29 124 31 124 32
Connection cable, RS 232 ¹⁾ 5 m 10 m 15 m 20 m	Type G 230550V01 230551V01 230552V01 230553V01
RS232 / USB Converter for setpoint definition of RS232 gauges	230399V02

^{*)} Please contact leybold for the correct replacement

 $^{^{\}mbox{\tiny 1)}}$ See chapter "Connection cables for Active Sensors"

Loadlock Transmitter

THERMOVAC TTR 200 N PENNINGVAC PTR 200 N

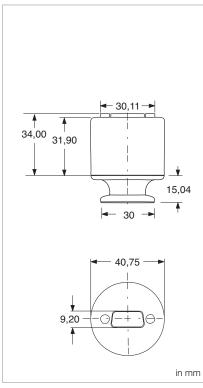
THERMOVAC Transmitter TTR 200 N (left) and PENNINGVAC Transmitter PTR 200 N (right)

Advantages to the User

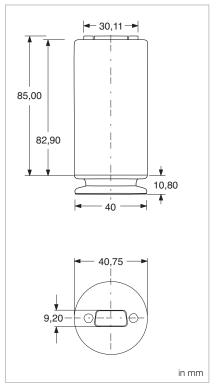
- Fast, accurate and repeatable pressure measurements reduce process cycle time
- Gas type independent pressure measurements from 50 mbar to 1500 mbar
- Combination of absolute and differential measurements offer unprecedented loadlock control
- Three integrated setpoints
- Up to three sensors in one housing for a wide measurement range
- Measurement signal insensitive to mounting position
- Ease of operation via analog output and digital communication
- LED ring to indicate status of the sensor

Typical Applications

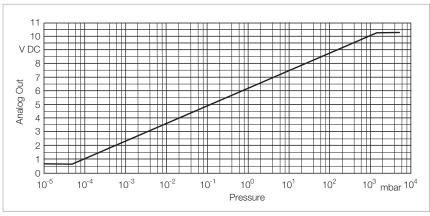
- Load lock applications
- Chamber over and under pressure control relative to ambient
- Coating Systems (e. g. UNIVEX)
- Vacuum chamber production
- Processes requiring both absolute pressure measurement and atmospheric switching capabilities
- Analytical equipment (e. g. mass spectrometer control)
- Scanning electron microscopes

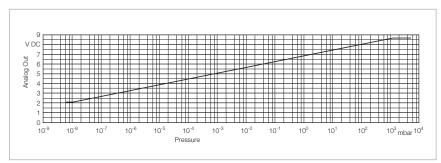

bine different measurement technologies in one housing making them the perfect gauges for load lock applications. The transmitters offer a wide absolute measurement range and a differential range of -1013 to 1013 mbar (relative to ambient pressure). The highly accurate differential sensor is ideal for loadlock control since it is insensitive to changes in ambient pressure conditions. Efficient loadlock control will improve throughput due to reduced cycle time.

The TTR 200 N and PTR 200 N com-


Option

For protection of the sensor TTR 200 N and PTR 200 N against contamination, radiation and other disturbing factors the installation of a baffle is recommended.


Two types of baffles are available: A build-in version for CF connections is mounted in the sensor; the baffle for ISO-KF connections is integrated in a centering ring.


Dimensional drawing for the THERMOVAC transmitter TTR 200 N

Dimensional drawing for the PENNINGVAC transmitter PTR 200 N $\,$

Characteristic of the THERMOVAC Transmitter TTR 200 N

Characteristic of the PENNINGVAC transmitter PTR 200 N $\,$

Loadlock Transmitter

		TTR 200 N	PTR 200 N
Measurement range (N ₂ and air) absolute differential	mbar (Torr)	5.0×10^{-5} to 1500 $(3.75 \times 10^{-5}$ to 1125) 5×10^{-5} to 1500 [RS 232] $(3.75 \times 10^{-5}$ to 1125) [RS 232] -1013 to 1013 [RS 232] $(-760$ to 760) [RS 232]	1.0 x 10° to 1500 (0.75 x 10° to 1125) 1 x 10° to atm. [RS 232] (0.75 x 10° to atm.) [RS 232] -1013 to 1013 [RS 232] (-760 to 760) [RS 232]
Measurement uncertainty of reading (typical) 1) Cold Cathode	mbar	- - -	1 x 10 ⁻⁸ to 1 x 10 ⁻³ ±30 % 1 x 10 ⁻⁴ to 1 x 10 ⁻³ ±10 % 1 x 10 ⁻³ to 100 ±5 % 100 to atm. ±25 %
MEMS-Pirani Diff. Piezo			100 to attnl. ±25 % 1 x 10 ⁴ to 1 x 10 ³ ±10 % 1 x 10 ³ to 100 ±5 % 100 to atm. ±25 % 10 to 10 ±10 % ±0.67 mbar -100 to -10 ±8 % -1013 to -100 ±1 % 10 to 100 ±5 %
Repeatability of reading (typical) 1) Penning MEMS-Pirani Diff. Piezo	mbar	1 x 10 ⁻³ to 100 ±2 % 1 x 10 ⁻³ to 100 ±2 % -1013 to 10 ±1 %	1 x 10 ⁻⁸ to 100 ±2 % 1 x 10 ⁻³ to 100 ±2 % -1013 to 10 ±1 %
Sensor Measurement principle		MEMS-Pirani and Diff. Piezo Thermal conductivity, combined with Piezo	Cold cathode, MEMS-Pirani and Diff. Piezo Thermal conductivity, combined with Piezo and cold cathode ionization
Supply voltage	V DC	9 to 30	
Power consumption	W	< 1.2	< 2
Electrical connection	V	D-Sub 15 pin	
Analog output Resolution Impedance	V DC bit Ω	$V_{out} = log10 (P_{mbar}) \times 1.286 + 6.143$ 0.61 to 10.23 16 100	$V_{\text{out}} = \log 0.6 (P_{\text{mbar}}) + 6.8$ 2.0 to 8.667 16 100
Update rate	Hz	16	16
Interfaces		RS 232	
Set point Range Absolute Differential Relay	mbar (Torr) mbar (Torr	1 x 10 ⁻⁴ to 1333 (0.75 x 10 ⁻⁴ to 1000) -1013 to 133 (-775 to 100) 3	1 x 10 ⁻⁸ to 1333 (0.75 x 10 ⁻⁸ to 1000) -1013 to 133 (-775 to 100) 3
Relay contact rating Relay contact resistance, max. Relay contact endurance, min. 1.0 A at 30 V DC load 0.2 A at 30 V DC load	mΩ	1 A at 30 V AC / DC, resistive load 100 100 000 2 000 000	1 A at 30 V AC / DC, resistive load 100 100 000 2 000 000
Status indicators		LED-ring (360°)	
Max. cable length	m	20	
Overpressure limit (abs.)	bar	2	
Operating temperature range ²⁾	°C (°F)	0 to 60 (32 to 140)	
Storage temperature range	°C (°F)	-20 to +65 (-4 to 149)	
Max. bakeout temperature	°C (°F)	85 (185)	
Max. rel. humidity	% n.c.	0 – 95	
Installation orientation			ny
Materials exposed to vacuum		304 stainless steel, Tin, Gold, Viton®	304 stainless steel, Ceramic (Al ₂ O ₃), Tin, Gold, Viton®, Titaniu
Dead volume (DN 16ISO-KF), approx	cm ³	2.8	28.6
Weight (DN 16 ISO-KF)	g	305	321
Protection class	IP	40	
CE certification			2014/30/EEC
Controller type		GRAPHIX ONE / TWO / THREE	

Accuracy and repeatability are typical values measured with Nitrogen gas at ambient temperature after zero adjustment

 $^{^{2)}}$ $\,$ There may be minimal deviation tolerances in the range of 40 – 60 $^{\circ}\text{C}$

Ordering Information

Loadlock Transmitter

	TTR 200 N	PTR 200 N
	Part No.	Part No.
THERMOVAC TTR 200 N DN 16 ISO-KF, 3SP	230365V02	-
PENNINGVAC PTR 200 N DN 25 ISO-KF, RS 232, 3 SP	-	230087V02
Replacement cathode plate for PTR 90 N / PTR 225 N (up to serial no. 17022777352) for PTR 90 N / PTR 225 N (from serial no. 17022777353)		EK16291V02 EK16292V02
Replacement anode ring for PTR 90 N / PTR 225 N (up to serial no. 17022777352) for PTR 90 N / PTR 225 N (from serial no. 17022777353)	- -	20028711V02 E20028712V02
Baffle, with centering ring (FPM (FKM)) DN 25 ISO-KF	-	230 078
Centering ring with fine filter DN 16 ISO-KF	883 96	-
Optional accessories Connection cable, RS 232 1) 5 m 10 m 15 m 20 m	Type G 230550V01 230551V01 230552V01 230553V01	
RS232 / USB Converter for setpoint definition and parametrization of RS232 gauges	230399V02	

¹⁾ See chapter "Connection cables for Active Sensors"

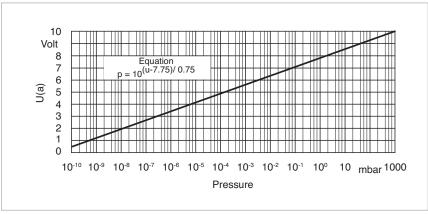
IONIVAC Transmitter ITR 90

The ITR 90 is a optimized combination transmitter. The combination of a hot cathode ionisation sensor according to Bayard-Alpert and a Pirani sensor permits vacuum pressure measurements of nonignitable gases and gas mixtures in the pressure range from 5 x 10⁻¹⁰ to 1000 mbar.

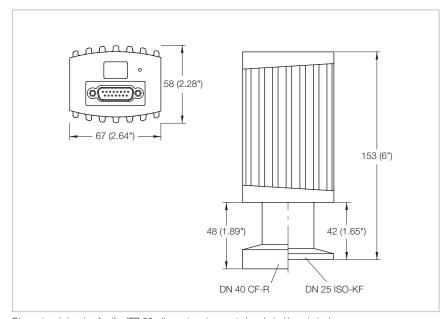
The ITR 90 can be ordered with integrated display or Profibus interface.

Advantages to the User

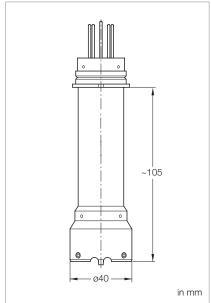
- Continuous pressure measurements from 10⁻¹⁰ mbar to atmospheric pressure
- High degree of reproducibility within the typical range for process pressures of 10⁻² to 10⁻⁸ mbar
- Controlled switching on and off sequencing through the integrated double Pirani optimized the service life of the yttrium coated iridium cathodes
- Compact design
- Enclosed, rugged electrode geometry in a rugged metal housing
- Efficient degassing by electron bombardment
- Simple fitting of the sensor
- Extension for higher bake out temperatures during the measurements
- One signal covering 13 decades
- One flange joint for 13 decade
- ITR 90 model with built-in display for stand-alone operation without additional display components
- RS 232 C interface


Typical Applications

- Analytical
- Evaporation and coating
- Vacuum furnaces
- General purpose pressure measurements in the fine and high vacuum ranges


Sensor

The sensor of the ITR 90 contains a dual filament Pirani system as well as a Bayard-Alpert measurement system.


When using the bake out extension, measurements will be possible also at flange temperatures up to 150 °C.

Characteristic of the ITR 90

Dimensional drawing for the ITR 90; dimensions in mm, in brackets () are in inch (Image with integrated display; Profibus interface differing)

Dimensional drawing for the bake out extension

IONIVAC Transmitter ITR 90

Measurement range mbar	5 x 10 ⁻¹⁰ to 1000	
(Torr)	(3.75 x 10 ⁻¹⁰ to 750)	
Measurement uncertainty, 10 ⁻¹ – 1000 mbar	≥ 15% of the meas. value	
Measurement uncertainty, 10 ⁻⁸ – 10 ⁻² mbar	15% of the meas. value	
Reproducibility, 10 ⁻⁸ – 10 ⁻² mbar	5% of the meas. value	
Principles of measurement	Hot cathode ionization according to Bayard-Alpert	
	combined with thermal conductivity according to Pirani	
Degas	Electron bombardment 3 minutes, max.	
Supply voltage V DC	20 to 28 V DC, typ. 24 V DC	
Power consumption, max. W	16	
Storage / nominal temperature range °C	-20 bis +70 / 0 bis +50	
Weight, approx.		
ITR 90, DN 25 ISO-KF kg (lbs)	0.285 (0.64)	
ITR 90, DN 40 CF kg (lbs) 0.550 (1.24)		
Sensor	Fully sealed, exchangeable	
Degassing temperature, max. °C	150 ¹⁾	
Materials in contact with the medium	Cu, W, Glass, NiFe, Mo, Stainless steel, Aluminum, Iridium, Yttrium, NiCr	
Dead volume, approx. cm ³	24 atDN 25 ISO-KF	
	34 at DN 40 CF	
Overpressure rating (abs.) bar	2	
Signal output ($R_a \ge 10 \text{ k}\Omega$)		
Measurement signal	0 bis 10 V; 0.774 to 10 V; 0.75 V decade	
Error signal	< 0.5 V	
Protection class IP	30	
Interface (standard / optional)	RS 232 C / Profibus	
Electrical connection	15-way Sub-D male connector / pin contacts	
Cable length, max.	100 / 30 bei RS 232 C	
	· · · · · · · · · · · · · · · · · · ·	

¹⁾ Flange temperature when using the bake out extension

Ordering Information

IONIVAC Transmitter ITR 90

without Display with Display

	Part No.	Part No.
ITR 90, DN 25 ISO-KF	120 90	120 91
ITR 90, DN 25 ISO-KF, Profibus interface	230 030	-
ITR 90, DN 40 CF-R, rotatable CF flange	120 92	120 94
ITR 90, DN 40 CF-R, rotatable CF flange Profibus interface	230 031	-
Options Power supply for IONIVAC transmitter 100 – 240 V AC / 24 V DC incl. 5 m connection cable and 5 m RS 232 C cable Bake out extension (100 mm, approx.) Baffle, DN 25 ISO-KF, with Installation baffle for CF/ISO-KF varian	127	06 7 06 07
Replacement sensor IE 90, DN 25 ISO-KF ¹⁾ IE 90, DN 40 CF-R ¹⁾		1 02 1 03
Calibration	see chapter "Miscellaneous", para. "Leybold Calibration Service"	
Connection cable	see chapter "Products", para. "Connection Cable for Active Sensors"	

¹⁾ Including hex. socket screw key

IONIVAC Transmitter ITR 200 S

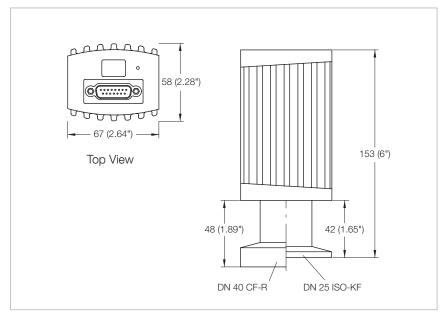
The ITR 200 S is an optimized dual cathode combination transmitter on the basis of the well proven ITR 90. The combination of a hot cathode ionization sensor according to Bayard-Alpert and a Pirani sensor allows vacuum pressure measurements of non-ignitable gases and gas mixtures in the pressure range from 5×10^{-10} to 1000 mbar.

Upon request, the pressure can be displayed on an integrated display.

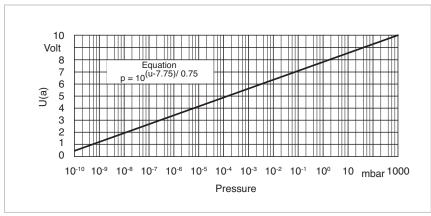
Advantages to the User

- Service life increase and increased operational reliability through integration of a second hot cathode
- Full coverage of the pressure range from 5 x 10⁻¹⁰ mbar to atmospheric pressure
- High repeatability within the typical process pressure range of 10⁻² to 10⁻⁸ mbar
- Controlled switching on and switching off through the integrated dual
 Pirani optimized the service life of the yttrium-coated iridium cathodes
- Compact design
- Enclosed, stable electrode geometry in rugged metal casing
- Efficient degassing through electron bombardment
- Simple to install
- ITR 200 S version with built-in display allows for stand-alone operation without the necessity for additional displays
- RS 232 C interface

Typical Applications


- Analytical engineering
- Sputtering and coating technology
- Vacuum furnaces
- Multipurpose pressure measurement in the medium and high vacuum range

Options


Upon request, the ITR 200 S can be supplied with an integrated display or a Profibus interface.

Sensor

The sensor of the ITR 200 S includes besides the Pirani system a dual cathode measurement system according to Bayard-Alpert. If one of the hot cathodes should burn out during operation, then the second cathode is automatically switched on. Moreover, each sensor contains a memory chip with the relevant system data. Thus after having exchanged a sensor, an automatic alignment is performed between sensor and operating electronics (plug and play).

Dimensional drawing for the ITR 200 S; dimensions in mm, in brackets () are in inch (lmage with integrated display; Profibus interface differing)

Characteristic of the ITR 200 S

IONIVAC Transmitter ITR 200 S

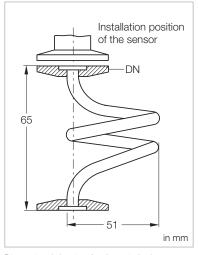
Measurement range	mbar	5 x 10 ⁻¹⁰ to 1000	
(Torr)		$(3.75 \times 10^{-10} \text{ to } 750)$	
Measurement uncertainty, 10 ⁻¹ – 1000 m	bar	≥ 15% of the meas. value	
Measurement uncertainty, 10 ⁻⁸ – 10 ⁻² mb	ar	15% of the meas. value	
Reproducibility, 10 ⁻⁸ – 10 ⁻² mbar		5% of the meas. value	
Principles of measurement		Hot cathode ionization according to Bayard-Alpert	
		combined with thermal conductivity according to Pirani	
Degas		Electron bombardment 3 minutes, max.	
Supply voltage	V DC	20 to 28 V DC, typ. 24 V DC	
Power consumption, max.	W	20	
Storage / nominal temperature range	°C	-20 bis +70 / 0 bis +50	
Weight, approx.			
ITR 200 S, DN 25 ISO-KF	kg (lbs)	0.50 (1.10)	
ITR 200 S, DN 40 CF	kg (lbs)	0.75 (1.65)	
Sensor		Fully sealed, exchangeable	
Degassing temperature, max.	°C	150 ¹⁾	
Materials in contact with the medium		Cu, W, Glass, NiFe, Mo, Stainless steel, Aluminum, Iridium, Yttrium, NiCr	
Dead volume, approx.	cm ³	24 atDN 25 ISO-KF	
		34 at DN 40 CF	
Overpressure rating (abs.)	bar	2	
Signal output ($R_a \ge 10 \text{ k}\Omega$)			
Measurement signal		0 bis 10 V; 0.774 to 10 V; 0.75 V decade	
Error signal		< 0.5 V	
Protection class	IP	30	
Interface (standard / optional)		RS 232 C / Profibus	
Switching function			
Standard		1 normally open contact	
Profibus		2 normally open contacts	
Electrical connection		15-way Sub-D male connector / pin contacts	
Cable length, max.	m	100 / 30 bei RS 232 C	

¹⁾ Flange temperature when using the bake out extension

Ordering Information

IONIVAC Transmitter ITR 200 S

see chapter "Products", para. "Connection Cable for Active Sensors"


without Display with Display Part No. Part No. ITR 200 S, DN 25 ISO-KF 1 switching function 230 250 230 251 ITR 200 SP, DN 25 ISO-KF, Profibus interface, 2 switching functions 230 252 ITR 200 S, DN 40 CF-R, rotatable CF flange 1 switching function 230 254 230 255 ITR 200 SP, DN 40 CF-R, rotatable CF flange Profibus interface, 2 switching functions 230 256 Options Power supply for IONIVAC transmitter 100 - 240 V AC / 24 V DC incl. 5 m connection cable and 5 m RS 232 C cable 121 06 Baffle, DN 25 ISO-KF, with Installation baffle for CF/ISO-KF varian 121 07 Replacement sensor 240 020 IE 200, DN 25 ISO-KF 2) 240 020 IE 200, DN 40 CF-R 2) 240 021 240 021 IE 200 SL 1), DN 40 CF-R 2) 240 022 Calibration see chapter "Miscellaneous", para. "Leybold Calibration Service"

Connection cable

 $^{^{1)}}$ SL = long version (bake out version)

²⁾ Including hex. socket screw key

Spiral Tube

Dimensional drawing for the spiral tube

Advantages to the User

Pressure sensors may through the use of the spiral tube be better protected against contamination like condensate, vapours and dusts. Thus measurement accuracy is improved and a longer service life of the pressure sensors is attained.

Installation is recommended in connection with

- measurement system TTR (preferred)
- CERAVAC CTR

Operating Principle

Through the specially developed geometry which provides a constant slope, possibly occurring contamination is removed.

Maintenance

Depending on the type of application regular maintenance on the spiral tube is recommended.

Note

- Measurement errors caused by the increased conductance of the component need to be taken into account
- Low vibration mounting must be ensured
- The sensor must be connected at the upper end

Technical Data

Spiral Tube

Materials	Stainless stee
Matchas	Otali liess stee

Ordering Information

Spiral Tube

	Part No.
Spiral Tube	
	230 082
	230 083
	230 084

Notes	

Connection Cables for Active Sensors

Active Sensors

Operating Units for Active Sensors

	DISPLAY ONE	DISPLAY THREE	GRAPHIX ONE GRAPHIX TWO GRAPHIX THREE	
THERMOVAC Transmitter (FCC 68)				
TTR 91 N, TTR 91 NS, TTR 96 NS a. o.	Turn a A	T A	T A	
TTR 101 N, TTR 101 NS2	Type A	Туре А	Type A	
TTR 911 N, TTR 916 N				
THERMOVAC Transmitter (RS 232)			Type G	
TTR 911 N, TTR 101 N, TTR 200 N	_	- -		
PENNINGVAC Transmitter (FCC 68)	Type A (PTD co)	Time A	Time A	
PTR 90 N, PTR 225 N, PTR 237 N	Type A (only PTR 90) Type A		Туре А	
PENNINGVAC Transmitter (RS 232)			T 0	
PTR 90 N, PTR 225 N, PTR 200 N	_	_	Type G	
CERAVAC Transmitter (RS 232)			T 0	
CTR 100 N, CTR 101 N (digital signal)	_	_	Type C	
IONIVAC Transmitter (RS 232)			Type C	
ITR 90 N, ITR 200 NS	_	_	Type C	

Active Sensors

Operating Units for Active Sensors

	IONIVAC IM 540 (Channel 3 und 4)	CMove	Lose Drahtenden
THERMOVAC Transmitter (FCC 68)	-	T A	
TTR 91 N, TTR 91 NS, TTR 96 NS a.o.	Туре А	Type A	-
TTR 101 N			
CERAVAC Transmitter (RS 232)			
CTR 91 N, CTR 100 N, CTR 101 N (analog signal)	Type B	Type B	Type E
IONIVAC Transmitter (RS 232)		T 0	
ITR 90 N, ITR 200 NS	_	Type C	Type E

Active Sensors

Operating Units for Active Sensors TURBOVAC IX Extension Box

THERMOVAC Transmitter (FCC 68)	
TTR 91 N, TTR 91 NS, TTR 96 NS a. o.	Type F
TTR 101 N	
PENNINGVAC Transmitter (FCC 68)	T F
PTR 90 N, PTR 225 N/NS, PTR 237 N	Туре F

Connection Cable

	Sensor side	Controller-/Customer side
Cable Type A	FCC 68 (RJ45) on b	ooth ends, 8-way, shielded
Type B	Sub-D 15-way female, shielded	FCC 68 (RJ45), 8-way, shielded
Type C	Sub-D 15-way female, shielded	Sub-D 15-way male, shielded
Type E	Sub-D 15-way female, shielded	bare wire ends, shielded
Type F	FCC 68 (RJ45), shielded	Sub-D 15-way male, shielded
Type G	Sub-D 15-way HD female, shielded	Sub-D 15-way male, shielded

Ordering Information

Connection Cable

	Туре А	Туре В
	Part No.	Part No.
Cable length		
1.5 m	800 103 V0032	-
5 m	124 26	230 013
10 m	230 012	230 014
15 m	124 27	230 015
20 m	124 28	230 016
30 m	124 29	230 017
50 m	124 31	230 019
75 m	124 32	230 020
100 m	124 33	230 021

Ordering Information

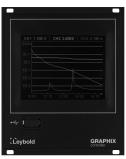
Connection Cable

Part No.	Part No.
124 55	124 63
230 022	163 69
124 56	124 64
124 57	124 65
124 58	_
230 345 V01	_
	124 55 230 022 124 56 124 57 124 58

Type C

Ordering Information

Connection Cable


Type E

	Туре F	Туре G
	Part No.	Part No.
Cable length		
5 m	230 032 V01	230 550 V01
10 m	230 023 V01	230 551 V01
15 m	-	230 552 V01
20 m	-	230 553 V01

Controller and Operating Units for Active Sensors

GRAPHIX ONE, TWO, THREE

operating unit with persistent display of all measurement channels, suited for the active sensors of the THERMOVAC, CERAVAC, linear sensors (DU series), PENNINGVAC and IONIVAC series.

Universal 1 to 3 channel display and

Controller GRAPHIX with different displays and rear panel (right)

Advantages to the User

- Display range from 1 x 10⁻¹⁰ to 2000 mbar
- 3.5" touch screen display with intuitive menu interface
- Graphic display of the measurement data
- Internal and external (front side USB) storing of measurement data and configuration files
- Leak rate indication based on the pressure rise method
- 6 adjustable variable hysteresis switching thresholds, floating changeover contacts and visual indication of the switching status in the display area, freely assignable to the individual measurement channels
- Different visualisation options (graphs and decimal display with zoom function)
- For connection of all active sensors of other brands
- Degas function for ITR transmitters
- Zero alignment for CTR transmitters

- 3 separate chart recorder outputs
 0 to 10 V for each measurement channel (analogue output)
- 4th programmable chart recorder output optional
- RS 232 C / RS 485 C interface with adjustable baud rate
- Relay output for error indication
- Display selectable between mbar,
 Torr, micron, Pascal or psi
- Compact installation and benchtop enclosure (1/4 19" 3 HU)
- Software update via USB optional
- Languages: English, German, Chinese, Japanese, French; Italian,
 Spanish, Korean
- Visualisation through LEYASSIST

running on a PC

Connectable Sensors

THERMOVAC

- TTR 211 / TTR 216 S
- TTR 90 / TTR 91 / TTR 91 N
- TTR 96 S / TTR 96 N S
- TTR 100 / TTR 100 S2
- TTR 101 / TTR 101 N / TTR 101 S2 / TTR 101 N 2S
- TTR 911 / TTR 911 N
- TTR 916 / TTR 916 N

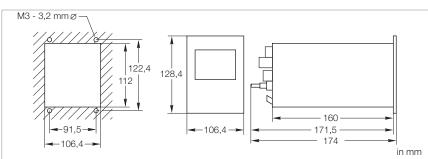
CERAVAC

- CTR 90 / CTR 91
- CTR 100 / CTR 100 N
- CTR 101 / CTR 101 N

Linear pressure sensors

- DU 200 / DU 201
- DU 2000 / DU 2001
- DU 2001 rel.

PENNINGVAC


- PTR 90 / PTR 90 N
- PTR 225 / PTR 225 N
- PTR 225 S / PTR 225 N S
- PTR 237 / PTR 237 N

IONIVAC

- ITR 90
- ITR 200 S
- ITR 200 SL

Other brands

 Active sensors with linear or logarithmic output

Front panel cut-out and dimensional drawing for the controller GRAPHIX ONE to THREE

Technical Data GRAPHIX ONE GRAPHIX TWO GRAPHIX THREE

Number of measurement channels		1	2	3
Measured values display		3,5" graph. TFT touch display		
Display range	mbar (Torr)	1 x 10 ⁻¹⁰ to 2000 (0.75 x 10 ⁻¹⁰ to 1500)		
Unit of measurement (selectable)			mbar, Torr, Micron, Pa, Psi	
Gas type correction			factor adjustable	
Sensor connection		15-wa	ay Sub-D socket and FCC68	(RJ45)
Sensor power supply	V DC		24 ± 5%	
Relay inputs and outputs			25-way Sub-D socket	
Switching threshold		freely as	signable to the measurement	channels
Number			6	
Adjustment range			sensor dependent	
Hysteresis		adjustable		
Relay contact		floating changeover contact		
Load rating		1 A / 30 V AC / 30 V DC		
Error message				
Relay contact		•	floating normally open contac	t
Load rating		1 A / 30 V AC / 30 V DC		
Chart recorder output $(R_a > 10 \text{ k}\Omega)$		0 to 10 V per measurement channel,		
		output characteristic corresponds to the connected sensor,		
		additionally one further chart recorder output can be programmed		
Control input		PTR: high voltage on, ITR 90/200: emission on		
Interface RS 232 C / RS 485 C		9-way Sub-D socket		
Mains connection	V AC / Hz	100 – 240 / 50/60		
Power consumption	W	< 50	< 70	< 100
Nominal temperature range	°C	C +5 to +45		
Weight	kg (lbs)	1.7 (3.75)		
Protection class	IP		20	
Possible languages		English, German, Chinese, Japanese, French, Italian, Spanish, Korean		

Ordering Information GRAPHIX ONE GRAPHIX TWO GRAPHIX THREE

	Part No.	Part No.	Part No.
GRAPHIX controller including			
2 m EURO- and US mains cord	230680V01	230681V01	230682V01
THERMOVAC, PENNINGVAC, CERAVAC, linear sensors (DU) and IONIVAC transmitter	see chap	oter "Products", para. "Active s	Sensors"
Connection cables for THERMOVAC and PENNINGVAC (Type A), CERAVAC (Type B analog, Type C digital and IONIVAC (Type C)	see chapter "Products", para. "Connection Cables for Active Sensors"		
Adapter USB/RS 232 C		800110V0103	
LEYASSIST GRAPHIX visualisation and operating software, including data storage			
and export (CSV file)		230440V01	

LabView® 1) driver, online via download available

¹⁾ LabView is a registered trademark of the company National Instruments

DISPLAY ONE

Cost-effective, compact single channel display unit for the transmitters from the THERMOVAC series and for PTR 90.

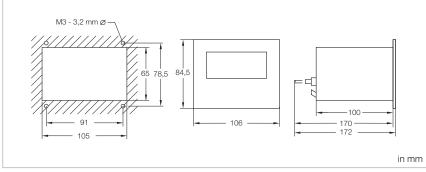
Advantages to the User

- Power supply voltage for the transmitters
- Four digit mantissa in the range from 5 x 10⁻⁹ to 2000 mbar
- Readout selectable between mbar, Torr or Pascal
- 0 to 10 V chart recorder output via plug-in screw terminals
- The switching threshold of the transmitters has been looped through to plug-in terminals

- The transmitter switching threshold settings are displayed
- Compact bench top enclosure (1/4 19", 2 HU)
- For fitting into 19", 3 HU racks
- Supply voltage 100 240 V

Connectable Sensors

THERMOVAC


- TTR 100 *)
- TTR 101 / TTR 101
- TTR 101 S / TTR 101 N S
- TTR 211 *)
- TTR 216 S *)
- TTR 90 *)
- TTR 90 S *)
- TTR 91 / TTR 91 N
- TTR 91 S / TTR 91 N S
- TTR 96 S / TTR 96 N STTR 911 / TTR 911 N
- TTR 916 / TTR 916 N

PENNINGVAC

- PTR 90 / PTR 90 N

Linear pressure sensor

- DU 200
- DU 201
- DU 2000
- DU 2001
- DU 2001 rel.
- *) Connecting of older sensors possible

Dimensional drawing and panel cut-out for the DISPLAY ONE

Technical Data DISPLAY ONE

Number of measurement channels		1	
Display for measured values		digital, 7 segment LED	
Measurement range mbar (Torr) 5 x 10 ⁻⁹ to 2000 (3.8 x 10 ⁻⁹ to 18		5 x 10 ⁻⁹ to 2000 (3.8 x 10 ⁻⁹ to 1500)	
Unit of measurement (selectable)		mbar, Torr, Pa	
Switching thresholds		from the transmitter are run to a terminal strip	
Chart recorder output ($R_a > 2,5 \text{ k}\Omega$)		0 - 10 Volt, characteristic corresponds to the connected transmitter	
Mains connection			
EURO version V AC / Hz		100 – 240 / 50/60	
US version V AC / Hz		100 – 240 / 50/60	

Ordering Information

DISPLAY ONE

	Part No.	
DISPLAY ONE		
with mains cord		
(EURO and US)	230 001	
THERMOVAC Transmitter		
PENNINGVAC Transmitter PTR 90	see chapter "Products", para. "Active Sensors"	
Linear pressure sensors DU	see chapter "Products", para. "Additional Sensors"	
Connection cables		
for THERMOVAC and		
PENNINGVAC (Type A)	see chapter "Products", para. "Connection Cables for Active Sensors"	
Adapter panel		
for installation in a 3 HU, 19» rack	230 005	

DISPLAY THREE

Cost-effective, operating and display units for the transmitters from the THERMOVAC, PENNINGVAC and DI/DU series.

All channels are displayed simultaneously.

Advantages to the User

- Power supply voltage for the transmitters
- Display range from 1 x 10⁻⁹ to 2000 mbar (0.75 x 10⁻⁹ to 1500 Torr)
- Readout selectable between mbar, Torr or Pascal
- Adjustable switching thresholds with variable hysteresis, floating changeover contacts and visual indication of the switching status in the display

M3 - 3,5 mm Ø

91,5 106,0

- Option of entering gas correction factors
- Separate chart recorder outputs 0 – 10 V for each measurement channel
- Compact bench top enclosure (1/4 19", 3 HU)
- For fitting into 19", 3 HU racks

ne display

Dimensional drawing and panel cut-out for the DISPLAY THREE

3,5 mm Ø

106,0

Connectable Sensors

THERMOVAC

- TTR 211 *)
- TTR 216 S *)
- TTR 90 *)
- TTR 91 / TTR 91 N
- TTR 96 S / TTR 96 N S
- TTR 100 *)
- TTR 100 S *)
- TTR 101 / TTR 101 N
- TTR 101 S / TTR 101 N S
- TTR 911 / TTR 911 N
- TTR 916 / TTR 916 N

PENNINGVAC

- PTR 90 / PTR 90 N
- PTR 225 / PTR 225 N
- PTR 225 S / PTR 225 N S
- PTR 237 / PTR 237 N

Linear pressure sensor

- DU 200

in mm

- DU 201
- DU 2000
- DU 2001
- DU 2001 rel.
- *) Connecting of older sensors possible

DISPLAY THREE

Number of measurement channels	3
Display for measured values	3 (1 per channel)
Measurement range mbar (Torr)	1 x 10 ⁻¹⁰ to 2000
Unit of measurement (selectable)	adjustable
Gas type correction (for PTR)	6 floating changeover contacts
Sensor connection	60 V, 1 A DC / 30 V, 1 A AC
Sensor power supply V DC	1 per channel,
Electrical outputs	configurable as 2nd switching threshold
Switching thresholds Number Adjustment range Hysteresis Relay contact Load rating Ready signal relay Error message Relay contact Load rating	3 (1 per channel) sensor dependent adjustable 6 floating changeover contacts 60 V, 1 A DC / 30 V, 1 A AC 1 per channel, configurable as 2nd switching threshold normally open contact 60 V, 1 A DC / 30 V, 1 A AC
Chart recorder output ($R_a > 10 \text{ k}\Omega$)	0 - 10 V per measurement channel, output characteristic corresponds to the connected transmitter
Control input	PENNINGVAC PTR: high voltage on
Mains connection V AC / Hz	85 – 240 / 50/60
Power consumption W	< 15
Nominal temperature range °C	+5 to +50
Weight kg (lbs)	1.4 (3.09)
Protection class IP	40

Ordering Information

DISPLAY THREE

	Part No.			
DISPLAY THREE with mains cord (EURO and US)	230 025			
THERMOVAC Transmitter	see chapter "Products", para. "Active Sensors"			
PENNINGVAC Transmitter	see chapter "Products", para. "Active Sensors"			
Connection cables for THERMOVAC and PENNINGVAC (Type A)	see chapter "Products", para. "Connection Cables for Active Sensors"			

Passive Sensors

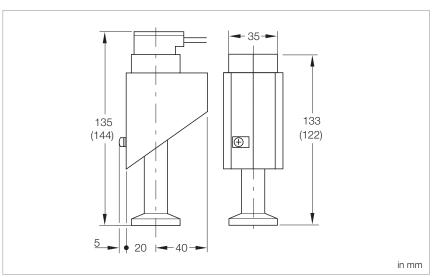
THERMOVAC Sensors TR 211, TR 211 NPT, TR 212, TR 216

These passive sensors use thermal conductivity technology according to Pirani.

Advantages to the User

- Measurement range 5 x 10⁻⁴ to 1000 mbar (3.75 x 10⁻⁴ to 750 Torr)
- Tungsten or platinum filament
- Cost-effective sensing cell
- Fully aligned and temperature compensated 0 to +40 °C
- Constant filament temperature

TR 211


- Aluminum sensing cell with tungsten filament
- Improved temperature compensation

TR 212

- Stainless steel sensing cell with tungsten filament
- Overpressure resistant

TR 216

- Stainless steel sensing cell with platinum filament and ceramics feed through
- Well suited for corrosive processes and water vapor atmospheres

Dimensional drawing for the TR 211, TR 212 and TR 216; TR 211 NPT in brackets

Technical Data TR 211 TR 211 NPT TR 212 TR 216

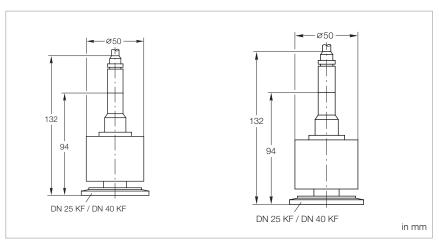
Measurement range mbai	(Torr)	5×10^{-4} to 1000 (3.8 × 10 ⁻⁴ to 7.5 × 10 ²)			
Operating temperature range (compensated)	°C	0 to +40			
Storage temperature range, max.	°C	80			
Filament		Tungsten Tungsten Tungsten Platinum			
Filament temperature	°C	110			
Permissible overload (abs.), max.	bar	3	3	10	10
Volume of the sensing cell, approx.	cm³	11			
Vacuum connection	DN	16 ISO-KF	1/8" NPT	16 ISO-KF/16 CF	16 ISO-KF
Materials in contact with the medium		Aluminium, Vacon, Glass, Tungsten, CrNi 8020, epoxy cement	Aluminium, Vacon, Glass, Tungsten, CrNi 8020, epoxy cement	Stainless steel, Vacon, Glass, Tungsten, CrNi 8020	Stainless steel 1.430 (SS 304), Al ₂ O ₃ , CrNi 8020, Platinum
Operating units		THERMOVAC TM 21, 22, 23 / COMBIVAC CM 31, 32, 33, 51 / PIEZOVAC PV 20			

Ordering Information TR 211 TR 211 NPT TR 212 TR 216

	Part No.	Part No.	Part No.	Part No.
THERMOVAC sensors Series 200				
DN 16 ISO-KF	157 85	_	158 52	157 87
DN 16 CF	_	_	157 86	_
DN 1/8" NPT	_	896 33	_	_
Replacement sensing cell	E 157 75	E 896 34	-	E 157 77

PENNINGVAC Sensors PR 25, PR 26, PR 27, PR 28

These passive sensors use cold cathode ionization technology according to Penning.


Advantages to the User

- Rugged

- Insensitive to air inrushes and vibrations
- Easy disassembly and cleaning of the measurement system
- Exchangeable cathode plate
- Improved ignition characteristic through titanium cathodes

Option

For protection of the PENNINGVAC sensors against contamination, radiation and other disturbing factors the installation of a baffle is recommended.

Dimensional drawing for the PENNINGVAC PR sensors

Technical Data PR 25 PR 26 PR 27 PR 28

Measurement range mbar	(Torr)	1 x 10 ⁻⁹ to 10 ⁻² (0.75 x 10 ⁻⁹ to 10 ⁻²)			
High voltage supply					
(anode potential)					
Trigger voltage	kV		(3.3	
Operation voltage	kV	1.6			
Storage temperature range	°C	-25 to +80			
Nominal temperature range	°C	0 to +80			
Bake out temperature (flange)	°C	-	_	-	200
Permissible overload (abs.)	bar	6 ¹⁾			
Dead volume	cm³	21			
Vacuum connection	DN	25 ISO-KF	40 ISO-KF	40 CF	40 CF
Materials in contact with the medium		Stainless steel, Nichrome, Ceramics, Titanium			
Weight, approx. kg	g (lbs)	0.75 (1.66)	0.75 (1.66)	0.8 (1.66) 0.8 (1.66)	0,8
Operating units		COMBIVAC CM 31, 32, 33, 51 / PENNINGVAC PM 31			

Ordering Information PR 25 PR 26 PR 27 PR 28

	Part No.	Part No.	Part No.	Part No.
PENNINGVAC sensors	157 52	136 46	136 47	136 48
Replacement cathode plate, titanium (5 pcs., incl. 5 ceramics discs)	EK 162 91			
Replacement anode ring	200 28 711			
Baffle, with centering ring (FPM (FKM)) DN 25	230 078	_	_	_
DN 40	-	230 079	_	_

 $^{^{\}mbox{\tiny 1)}}$ When using an ultra sealing gasket at the vacuum connection

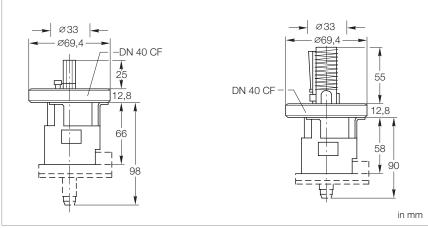
Note:

PR 26 replaces PR 31, 32, 35 PR 27 replaces PR 36

IONIVAC Sensors IE 414 and IE 514

These passive sensors use hot cathode ionization technology.

IE 414


- Bayard-Alpert sensing system
- Measurement range to 2 x 10⁻¹¹ mbar (1.5 x 10⁻¹¹ Torr)
- Protection shield welded in place

IE 514

- Extractor sensing system
- Reliable to 1 x 10⁻¹² mbar (0.75 x 10⁻¹² Torr)
- Significant reduction of X-ray and ion desorption effects

Advantages to the User

- Exchangeable cathode
- High accuracy of the measurements due to individually calibrated sensing system

Dimensional drawing for the IE 414 (left) and IE 514 (right)

Technical Data IE 414 IE 514

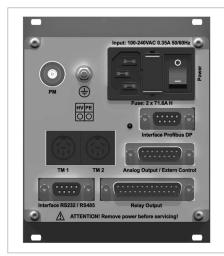
Measurement rangembar (Torr) 2×10^{-11} to 10^{-2} (1.5 $\times 10^{-11}$ to 10^{-2}) 10^{-12} to 1×10^{-4} (1X-ray limitmbar (Torr) $\leq 10^{-11}$ ($\leq 10^{-11}$) $\leq 10^{-12}$ (so 10^{-12} (so 10^{-12} do 10^{-12}	
Operating temperature range C O to +80 Degassing temperature at the flange, max. C Material Cathode Feedthrough pins C O to +80 O to +80 Iridium with yttric oxid coating NiFe 42 NiFe	0 ⁻¹² to 7.5 x 10 ⁻⁵
Degassing temperature at the flange, max. C Material Cathode Feedthrough pins C Degassing temperature C S C C C C C C C C C C C	≤ 10 ⁻¹²)
at the flange, max. *C 250 1/ 400 2 Material Cathode Iridium with yttric oxid coating Iridium with yttric part oxid coating NiFe 42 NiFe 42 NiFe 42	
Material Cathode Iridium with yttric oxid coating Iridium with yttric peedthrough pins NiFe 42 NiFe	
CathodeIridium with yttric oxid coatingIridium with yttricFeedthrough pinsNiFe 42NiFe	
Feedthrough pins NiFe 42 NiFe	
	ic oxid coating
	42
Anode Pt/lr 90/10/pt wire Stainless St	eel 1.4404
Vacuum connection DN 40 CF	
Adjustment data	
Ion detector potential V 0	1
Cathode potential V 80	0
Anode potential V 220 22	0
Emission current mA 0.06 to 0,6 1.4	6
Hot cathode current A 1.4	
Hot cathode voltage V 2.7 3.	7
Sensitivity for Nitrogen mbar -1 17.0 6.	6
Bake out operation,	
Electron bombardment V / mA 700 / 30	
Operating units IM 540, CM 52	

Ordering Information

IE 414

IE 514

	Part No.	Part No.
IONIVAC sensors	158 66	158 67
Replacement cathode	158 63	158 61


¹⁾ With bakeable gauge head cable

With gauge head cable detached

Operating Unit for Passive Sensors

COMBIVAC CM 51/CM 52

Rear side of the COMBIVAC $\,$ CM 51 (left) and CM 52 (right)

Advantages to the User

- Compact 3 channel operating unit for a pressure range for passive sensors of
 - 10^{-9} to 1000 mbar (CM 51)
 - 10⁻¹² to 1000 mbar (CM 52)
- Automatic switchover from THERMOVAC operation to
 - Penning (cold cathode) operation (CM 51)
 - UHV sensors (Bayard-Alpert measurement system IE 414 or extractor measurement system IE 514 (CM 52)
- Measurement cable lengths up to 100 meters are possible depending on the type of application

- Easy to operate
- Keyboard locking through SOFT-
- Two adjustable switching thresholds with a relay contact for each measurement channel
- Logarithmic chart recorder output
 0 10 V or 2 10 V
- Wide range power supply 100 240 V
- Unit of pressure selectable between mbar, Torr und Pascal
- Compact, rugged Penning sensor insensitive to operation at high pressures (see para. "Sensors")

- The COMBIVAC CM 51 covers the complete pressure range between 10⁻⁹ and 1000 mbar by combining two measurement principles -
- THERMOVAC and PENNINGVAC providing both monitoring and control functions.

The COMBIVAC CM 52 offers by combining two UHV principles of measurement (THERMOVAC absolute pressure sensor and Bayard-Alpert measurement system IE 414 or extractor measurement system IE 514) measurements of vacuum pressures in the range between 10⁻¹² and 1000 mbar.

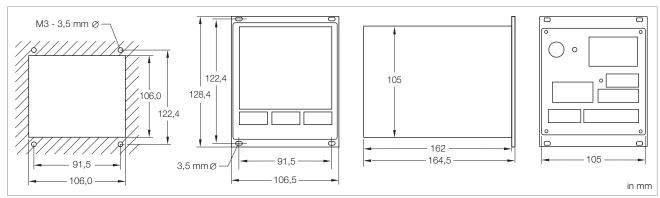
- Aligned and temperature compensated THERMOVAC sensors (see para. "Sensors")
- Cost-effective replacement sensors and electrodes
- Error message for each channel, for example in the case of broken filament, defective sensor line or failed plasma discharge
- Compact benchtop enclosure (1/4 19", 3 HU) made of metal for installation in front panel cut outs and 19" racks
- RS 232 C and Profibus interface
- CE mark
- RoHS-compliant

Typical Applications

- Universal monitoring the operation of high vacuum pump systems like: Turbomolecular pump systems Diffusion pump systems Cryogenic pump systems
- Annealing, melting, brazing and hardening furnaces
- Coating systems
- Analytical instrumentation
- Deployment in thermal radiation resistant and degassable systems is possible
- Particle accelerators

Connectable Sensors

THERMOVAC


- TR 211
- TR 211 NPT
- TR 212
- TR 216

PENNINGVAC (only CM 51)

- PR 25
- PR 26
- PR 27
- PR 28

IONIVAC (only CM 52)

- IE 414
- IE 514

Front panel cut-out (left) and dimensional drawing (right) for the COMBIVAC CM 51 and CM 52

Technical Data COMBIVAC

		CM 51	CM 52
Number of measurement channels		3	3
Measurement range Channel 1, 2 (THERMOVAC) Channel 3 (PENNINGVAC) Channel 3	mbar (Torr) mbar (Torr)	0 10 10 10 10 10 10 10 10 10 10 10 10 10	5 x 10 ⁻⁴ to 1000 (3.5 x 10 ⁻⁴ to 750 –
(IE 414 Bayard-Alpert) (IE 514 Extraktor)	mbar (Torr) mbar (Torr)		2×10^{-11} to 1×10^{-2} (1.5 × 10^{-11} to 0.75 × 10^{-2}) 2×10^{-12} to 1×10^{-4} (1.5 × 10^{-12} to 0.75 × 10^{-4})
Unit of measurement (selectable)		mbar, ⁻	Torr, Pa
Measurement uncertainty THERMOVAC		\leq 20% of the measured value \leq 20% of the measure in the range 10 ⁻³ to 10 ⁻² mbar (\pm 20%) in the range 10 ⁻³ to 10 ⁻² mbar (\pm 15%) in the range 10 ⁻² to 10 ⁻² mbar (\pm 15%)	
PENNINGVAC		± 30% of the measured value in the range 10 ⁻⁸ to 10 ⁻⁴ mbar	-
IE 414/514		-	± 10% of the displayed value (however, this value may increase depending on the type of application)
Measurement cable	m	up to 100 (applic	ation dependent)
Display for measured values		digital, 7 segment LED, 4 digit	mantissa and 2 digit exponent
Type of gas (selectable)		factor ac	djustable
Switching thresholds Operating mode Adjustable switching thresholds		2 per channel 2 per channel single, interval-trigger single, interval-tr	
THERMOVAC PENNINGVAC Bayard-Alpert Extraktor	mbar (Torr)	5 x 10 ⁻³ to 500 (5 x 10 ⁻³ to 375) 1 x 10 ⁻⁸ to 9.9 x 10 ⁻³ (0.75 x 10 ⁻⁸ to 7.4 x 10 ⁻³) –	5 x 10 ⁻³ to 500 (5 x 10 ⁻³ to 375) - 1 x 10 ⁻⁸ to 5 x 10 ⁻³ (0.75 x 10 ⁻⁸ to 3.75 x 10 ⁻³) 1 x 10 ⁻¹¹ to 1 x 10 ⁻¹¹ (0.75 x 10 ⁻¹¹ to 0.75 x 10 ⁻¹¹)
Switching relay hysteresis		10% of the trigger value (default), freely adjustable for THERMOVAC and PENNINGVAC	10% of the trigger value (default), freely adjustable for THERMOVAC and IE 414 oder 514
Relay contact load rating		AC/DC, max	c. 30 V / 1 A
Chart recorder output (default) THERMOVAC		0 to 10 V, log. divisions linear: 3 decades, approximately 10.5 V in case of a failure, logarithmic: (1 x 10 ⁻³ mbar), 1.67 V/decade logarithmic: (1 x 10 ⁻³ mbar)	
PENNINGVAC		logarithmic: (1 x 10 ⁻⁹ mbar), 1.43 V/decade	-
IE 414 oder 514		-	logarithmic: (1 x 10 ⁻¹² mbar), 1.00 V/decade
Interface		RS 232 C, RS 4	85 and Profibus
Mains connection 50/60 Hz	V AC	100 -	- 240
Power consumption	W	< 10	65
Storage temperature range	°C	°C -20 to +60	
Nominal temperature range	°C	C +5 to +50	
Max. rel. humidity	% n.c.	c. 80	
Weight	kg (lbs)	1.4 (3.09)	
Dimension (W x H x D)	mm	m 106.4 x 128.5 x 164.5	
Installation depth	mm	approx. 220	
Protection class	IP	40	

Ordering Information

COMBIVAC

-	CM 51	CM 52
	Part No.	Part No.
Operating unit COMBIVAC CM 51/52		
including EURO and US mains cord, 2 m		
with RS 232 C / 485	230 110	230 115
with Profibus DB	230 111	230 116
Cable adapter CM 31 - CM 51	230 112 V01	_
Options		
19" installation frame	161	00
1/4 19" blank panel	161	02
THERMOVAC sensors for CM 51/52		
TR 211, DN 16 ISO-KF	157	' 85
TR 211, 1/8" NPT	896	33
TR 212, DN 16 ISO-KF	158	3 52
TR 212, DN 16 CF	157	['] 86
TR 216, DN 16 ISO-KF	157	' 87
Gauge head cables for TR sensors		
5 m	162	2 26
10 m	162	2 27
15 m	124	34
20 m	162	2 28
30 m	124	35
50 m	124	37
75 m	124	38
100 m	124	39
PENNINGVAC sensors for CM 51		
PR 25, DN 25 ISO-KF	157 52	_
PR 26, DN 40 ISO-KF	136 46	_
PR 27, DN 40 CF	136 47	_
PR 28, DN 40 CF, bakeable	136 48	_
Gauge cables for PR sensors		
5 m	162 88	_
10 m	162 89	_
15 m	124 49	_
20 m	157 56	_
30 m	124 50	_
50 m	124 52	_
75 m	124 53	_
100 m	124 54	_
IONIVAC sensors for CM 52		
IE 414, DN 40 CF	-	158 66
IE 514, DN 40 CF	-	158 67
Mains cable		
3 m (US)	800 102	2 V1002
Gauge head cables for IE sensors		
5 m	-	158 68
10 m	-	150 88
15 m	-	230 670 V01
5 m, bakeable to 200 °C	-	158 44
10 m, bakeable to 200 °C	<u>-</u>	230 671 V01
Extension cables for IE 414/514		
10 m	-	245 002
20 m	-	200 02 937
30 m	-	245 011 V01
50 m	-	245 010 V01
up to 100 m (application dependent)	-	upon request

IONIVAC IM 540

The 3-channel display and operating unit IONIVAC IM 540 offers, by combination of up to 4 different principles of measurement – Pirani, capacitive, Bayard-Alpert and Extractor –, complete coverage and control of the vacuum pressure in the range between 10⁻¹² mbar and atmospheric pressure.

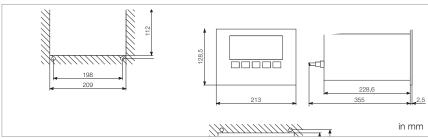
Advantages to the User

- Precise UHV pressure measurements with the Bayard-Alpert sensor
 IE 414 (offering excellent longterm stability) or the Extractor sensor
 IE 514 (offering an extremely low X-ray limit of < 1 x 10⁻¹² mbar)
- 1 measurement channel for IONIVAC sensor (Bayard-Alpert or Extractor)
- Possibility of simultaneously connecting a second IONIVAC sensor
- Degassing of the anode through electron bombardment with timelimit
- Continuous UHV measurement also during the degassing phase (up to +250 °C with bakeable gauge head cable)
- 2 measurement channels for direct connection of transmitters from the series THERMOVAC TTR and CERAVAC CTR
- Selectable pressure units (mbar, Torr, Pascal, Micron)
- Display of a single measurement channel with pressure trend through analogue bargraph or simultaneous display of all measurement channels
- Two adjustable thresholds with adjustable hysteresis and freely assignable to the measurement channels

- Compact benchtop enclosure (1/2 19", 3 HU)
- RS 232 C interface provided as standard
- Simple software updates possible through the RS 232 interface
- Profibus interface (optional)
- CE mark

Typical Applications

- Pressure measurement and control in the UHV range
- Measurement of ultimate pressure in UHV systems
- Checking of ultimate pressure in semiconductor production
- Total pressure measurements in the area of cryo technology
- Total pressure measurements in calibration systems


Connectable Sensors

- Bayard-Alpert sensor IE 414
- Extractor sensor IE 514 (see Chapter "Additional Sensors") combined with
- THERMOVAC TTR 211, TTR 216 S, TTR 90, TTR 91 and TTR 96 S
- CERAVAC CTR 90, CTR 91 and CTR 100

(see Chapter "Active Sensors")

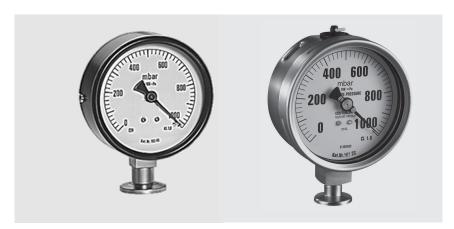
Two passive sensors working with ionization technology (IE 414 and/or IE 514) could be connected simultaneously to the IONIVAC IM 540 while only one is in operation.

A pressure dependent emission control of these sensors is possible if a THERMOVAC TTR or CERAVAC CTR 100/CTR 91 of suitable range overlap is connected

Front panel cut-out (left) and dimensional drawing (right) for the IONIVAC IM 540

Technical Data IONIVAC IM 540

Number of measurement channels	3	
Bayard-Alpert / Extractor	Channel 1 or 2	
THERMOVAC / CERAVAC	Channel 3 and 4	
Measurement range mbar (Torr)	1 x 10 ⁻¹² to 1100 (0.75 x 10 ⁻¹² to 825)	
Measurement range Extractor mbar (Torr)	1 x 10 ⁻¹² to 1 x 10 ⁻⁴ (0.75 x 10 ⁻¹² to 0.75 x 10 ⁻⁴)	
Measurement range Bayard-Alpert mbar (Torr)	1 x 10 ⁻¹¹ to 1 x 10 ⁻² (0.75 x 10 ⁻¹¹ to 0.75 x 10 ⁻²)	
Measurement range switching	automatic or decade pre-select	
Units of measurement (selectable)	mbar, Torr, microns, Pa	
Measurement uncertainty %	±10 of the value displayed	
Trend indication	bargraph	
Measurement value display rate	1 x 10^{-10} to 1 x 10^{-2} mbar, 5 s ⁻¹	
	1 x 10 ⁻¹² to 1 x 10 ⁻¹⁰ mbar, 0.5 s ⁻¹	
Emission current	1.6	
Extraktor sensor mA Bayard sensor mA	1.6 0.1 to 10; automatic control	
Emission current shutdown at	p > 1 x 10 ⁻² mbar, broken cathode, short-circuit,	
Emission surrent shataswii at	interruption of the electric circuit	
Bake out power	'	
Extractor / Bayard-Alpert W	20 / 40	
Sensor power supply, potential for	anode Extractor / Bayard-Alpert: 220 V,	
	cathode Extractor / Bayard-Alpert: 100 V/80 V,	
	Reflector Extractor: 205 V	
Sensor connections	Bayard-Alpert and Extractor - single operation is possible	
	2 x Bayard-Alpert or Extractor (redundant operation)	
Measurement system detection	automatically	
Measurement system switchover	automatically, pressure dependent, error dependent	
Chart recorder outputs	logarithmic 0 to 10 V (1 V $/$ dec.) or	
Extractor / Bayard-Alpert	linear 0 to 10 Volt	
$(R_a = 2.5 \text{ k}\Omega)$	error indication U > 10.5 V	
Interface (standard / optional)	RS 232 C / Profibus	
Switching thresholds (single operation or interval)	2 with floating changeover contact	
Mains connection V AC / Hz	90 – 264 / 50/60	
Storage temperature range °C	-40 to +60	
Nominal temperature range °C	+5 to +50	
Dimensions of the benchtop mm instrument, (W x H x D)	213 x 128.5 x 250	
Weight, approx. kg (lbs)	3.0 (6.62)	
regin, approx. kg (ibs)	0.0 (0.02)	

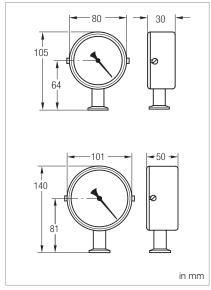

Ordering Information

IONIVAC IM 540

	Part No.	
IONIVAC IM 540		
with mains cord 2 m (EURO and US)	230 100	
Options		
Profibus DP interface	230 101	
Calibration	see chapter "Miscellaneous", para. "Leybold Calibration Service"	
IONIVAC sensors		
IE 414, DN 40 CF	158 66	
Replacement cathode IE 414	158 63	
IE 514, DN 40 CF	158 67	
Replacement cathode IE 514	158 61	
Gauge head cables for IE 414/514		
5 m	158 68	
10 m	150 88	
15 m	230 670 V01	
5 m, bakeable to 200 °C	158 44	
10 m, bakeable to 200 °C	230 671 V01	
Extension cables for IE 414/514		
10 m	245 002	
20 m	200 02 937	
THERMOVAC transmitter TTR	see chapter "Products", para. "Active Sensors"	
Connection cable for THERMOVAC (Type A)	see chapter "Products", para. "Connection Cable for Active Sensors"	
CERAVAC transmitter CTR	see chapter "Products", para. "Active Sensors"	
Connection cable for CERAVAC (Type B)	see chapter "Products", para. "Connection Cable for Active Sensors"	

Mechanical Gauges

Bourdon Vacuum Gauges


Advantages to the User

- Highly reliable, rugged, insensitive to vibrations
- Linear readout, independent of the type of gas
- Excellent media compatibility owing to the stainless steel movement (BOURDONVAC C)
- IP 54 protection (BOURDONVAC C)

Typical Applications

- Vacuum distillation
- Drying processes
- Vacuum conveying systems

Rugged relative pressure vacuum gauges based on the Bourdon principle covering the pressure range from 1 to 1020 mbar (0.75 to 765 Torr).

Dimensional drawing for the BOURDONVAC A (top) and the BOURDONVAC C (bottom)

Technical Data

BOURDONVAC A

BOURDONVAC C

Measurement range	mbar (Torr)	1 to 1020 (0.75 to 765)	
Measurement uncertainty	% FS	1	
Class 1 (EN 837)	% FS	1	
Overload range (abs. briefly)	bar	1.5	1.3
Storage temperature range	°C	-25 to +60	
Nominal temperature range	°C	+10 to +60	
Flange connection	DN	16 ISO-KF	
Length of scale	mm	207 188	
Diameter	mm	80	101
Overall height	mm	105	140
Weight	kg (lbs)	0.25 (0.55)	0.5 (1.10)
Leak tightness	mbar x l/s	1 x 10 ⁻⁸	
Materials in contact with the me	dium	Nickel plated standard steel, bronze, soft solder	Stainless steel 1.4404

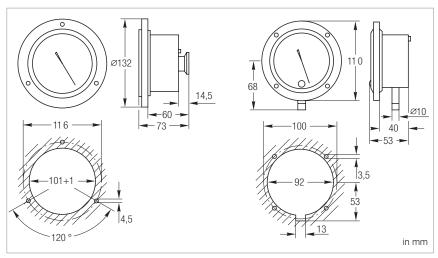
Ordering Information

BOURDONVAC A

BOURDONVAC C

	Part No.	Part No.
Bourdon vacuum gauge	160 40	161 20

Capsule Vacuum Gauges


Rugged absolute pressure gauges for the pressure range from 1 to 1000 mbar (0.75 to 750 Torr).

Advantages to the User

- Rugged and insensitive to vibrations
- Models available for two measurement ranges (1 to 100 mbar (0.75 to 75 Torr) and 1 to 1000 mbar (0.75 to 750 Torr))
- Readout independent of the type of gas and changes in atmospheric pressure
- Linear pressure readout
- Installation direct via the connection flange or panel mounting
- Model with integrated isolation valve for use on packaging machines (Part No. 160 68)

Typical Applications

- Measurement of absolute pressures (for inert gases only)
- Vacuum conveying systems
- Operation monitoring
- Packaging

Dimensional drawings for the capsule vacuum gauges Part Nos. 160 63/64 (left) and Part No. 160 68 (right)

Capsule Vacuum Gauge

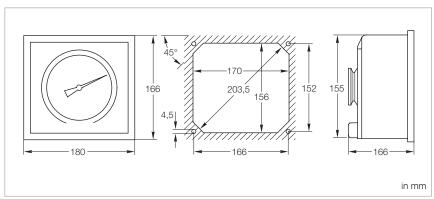
Measurement range	mbar (Torr)	1 to 100 (0.75 to 75)	1 to 100 (0.75 to 75)	1 to 1000 (0.75 to 750)
Measurement uncertainty	% FS	1.0	2.5	1.6
Overload range (abs. briefly)	bar	1.5		
Storage temperature range	°C		-25 to +60	
Nominal temperature range	°C	+10 to +60		
Length of scale	mm	205 180 205		
Dead volume, approx.	cm ³	235	167	235
Diameter	mm	132 110 132		132
Weight	kg (lbs)	0.7 (1.54)		0.7 (1.54)
Vacuum connection	DN	16 ISO-KF	10 mm dia. hose nozzle with integrated isolation valve	16 ISO-KF
Max. inclination when installed		45°		
Materials in contact with the medium		Brass, Standard steel nickel plated, Glass, NBR, Aluminum, Copper beryllium, Soft and hard solder, Resin		

Ordering Information

Capsule Vacuum Gauge

	Part No.	Part No.	Part No.
Capsule vacuum gauge	160 63	160 68	160 64

Diaphragm Vacuum Gauge DIAVAC DV 1000


Rugged mechanical diaphragm vacuum gauge of high accuracy for the rough vacuum range from 1 to 1000 mbar (1 to 750 Torr).

Advantages to the User

- Wide measurement range from
 1 to 1000 mbar (1 to 750 Torr) with high resolution in the range from
 1 to 100 mbar (1 to 75 Torr)
- The scale of each gauge is individually calibrated
- Absolute pressure gauge
- Readout independent of the type of gas and changes in atmospheric pressure
- Stainless steel diaphragm for excellent compatibility with most media
- Laser welding technology for high precision diaphragm mount
- Rugged table-top housing, can be freely mounted above the flange connection; also for panel mounting
- Measurement chamber can be easily cleaned owing to the detachable measurement flange

Typical Applications

- Chemical processes
- Vacuum destillation
- Absolute pressure measurements for gas mixtures
- For use in explosion hazard rated areas
- Drying processes
- Lamp manufacture

Dimensional drawing and panel cut-out for the DIAVAC DV 1000

DIAVAC DV 1000

Measurement range	mbar (Torr)	1 to 1000 (1 to 750)	
Measurement uncertainty			
1 – 10 mbar (1.0 - 7.5 Torr)		±1 mbar	
10 – 600 mbar (7.5 - 450 Torr)		± 10% vom Messwert	
Permissible overload (abs.)	bar	3	
Storage temperature range	°C	-10 to +60	
Nominal temperature range	°C	0 to +60	
Length of scale	mm	270	
Dead volume	cm ³	130	
Dimension (W x H x D)	mm	180 x 166 x 100	
Weight	kg (lbs)	2.7 (5.95)	
Vacuum connection	DN	40 ISO-KF	
Materials in contact with the medium		Stainless steel 1.4301, 1.4310 (diaphragm), FPM (FKM)	

Ordering Information

DIAVAC DV 1000

	Part No.
DIAVAC DV 1000	
mbar display	160 67 ¹)
Torr display	896 06 ¹⁾
Factory calibration	154 22
Replacement sinter filter	
with centering ring, DN 40 ISO-KF	231 93 515
Replacement housing, complete	240 000

¹⁾ Complete with centering ring and sintered filter

Additional Sensors

Older Sensors / Replacement Sensors

Linear pressure sensor

Replacement sensor TTR 211

Replacement sensor TTR 216

Replacement spare cathode IE 413

Replacement sensor IE 100

DN 25 ISO-KF

Linear pressure sensor

DN 40 CF

Replacement sensor TTR 211

Replacement sensor TTR 216

Type

Corresponding Sensors/ Operating Units

TTR 211 PB / D

TTR 216 PB / D

ITR 100

ITR 100

IM 510

DI 200

DI 201

DI 2000

DI 2000 Adaptor

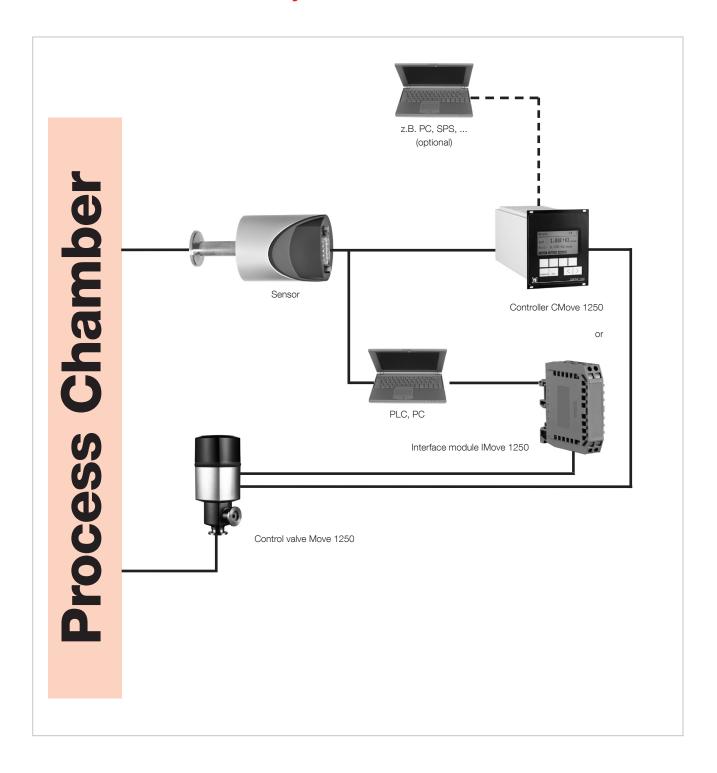
Part No.
E 157 75
E 157 77
E 163 61
E 163 67
158 63
158 12

158 14

158 13

245022V01

Ordering Information


(Previous version)

¹⁾ For all DI-Sensors

Notes	

Pressure Switches and Control Instruments

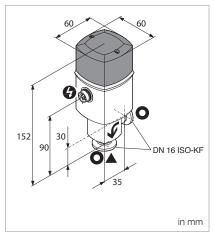
Pressure Control System Move

Control Valve Move 1250

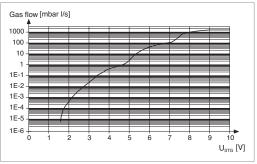
Control valve Move 1250

Control Valve Move 1250

Advantages to the User


- Extended control range from 1 x 10⁻⁶ to 1250 mbar x l/s
- High controllable gas throughput
- Corrosion resistant owing to FPM (FKM)/stainless steel
- In combination with CMove the valve closes automatically in the event of a power failure
- Valve driven either by the controller CMove 1250 or by a PC or a PLC through the IMove interface
- Electromotive pressure control with variable gas flow (upstream regulation) or with variable conductance (downstream regulation)

Control Valve


Move 1250

Vacuum connection		DN 16 ISO-KF
Mounting orientation		Any
Leak tightness	mbar x l/s	1 x 10 ⁻⁹
Pressure range		1 x 10 ⁻⁸ mbar to 2.5 bar (absolute)
Gas flow ¹⁾ with filter, on the inlet side with filter, on the inlet and the vacuum side	mbar x l/s	5 x 10 ⁻⁶ bis 1250 mbar x l/s 5 x 10 ⁻⁶ to 1000
Power supply Operation voltage Power consumption Current consumption Actuation Digital Analog	V DC VA mA V DC	24 (± 10%) 12 500, 20 to 30 (closed circuit current) Step motor CMove or IMove 1250 0 to 10
Type of protection	IP	40
Closing time / opening time	s	3 / 4
Ambient temperature	°C	+5 to +40
Bake out temperature Valve body Actuator	°C °C	80 60
Material Valve body Valve needle, valve disc Filter Seals Dosing sleeve		Stainless steel 1.4435 Stainless steel 1.4301 Stainless steel 1.4404 FPM Fluorplastomer
Weight	kg (lbs)	0.5 (1.1)

¹⁾ For air at a differential pressure of $\Delta p = 1$ bar

Dimensional drawing for the Move 1250

Gas flow curve of the Move 1250

Ordering Information

Control Valve Move 1250

	Part No.
Control Valve	
Move 1250	230 219
Accessories	
Filter for the inlet or vacuum side consisting of filtering candle, O-ring and two securing rings	109 63
Connection cable	100 00
CMove 1250 - Control valve Move 1250	
3 m	230 220
5 m	230 221
10 m	230 222
15 m	230 223
20 m	230 224
25 m	230 225

Notes	

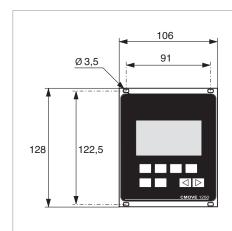
Controller CMove 1250

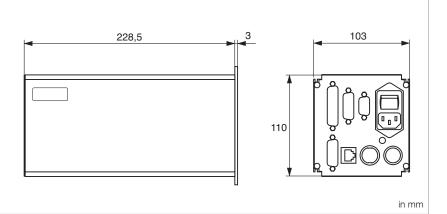
Controller CMove 1250

Technical Applications

- Simple to operate
 - Self-explanatory LCD display and function keys
- Analog/digital inputs/outputs and interfaces
 - Digital input valve control, switchover

Pressure and gas flow adjustment Digital output valve control, error message


- Adjustable PID control algorithms
- 99 pre-programmed PI control algorithms for fast and simple operation
- For installation or tabletop use (1/4 19")


Typical Applications

The controller CMove in connection with the electric control valve Move 1250 or Move X is suited for applications in the areas like for example

- Semiconductor industry
- Analytical
- Coating
- Quality control
- Surface treatment

as well as in all applications where simple, fast and accurate pressure control is desired and necessary.

Dimensional drawing for the CMove 1250

Controller CMove 1250

Power supply	
Mains voltage, 50/60 Hz V AC	90 – 250
Power consumption VA	50
Control types	Auto = (PI) adjustable in 1 to 99 selectable steps
7,000	PID = PID is user adjustable
Control accuracy 1)	0.5% F.S. sensor
Display	LCD 64 x 128 Pixel
<u> </u>	
Display units (selectable) Pressure	anhari Terri Da rah/
Flow	mbar, Torr, Pa, mV
	mbar I/s, Torr I/s, Pa I/s, mV
Measurement range	
Pressure control	
CERAVAC	
THERMOVAC	
PENNINGVAC (not for PTR 90)	
IONIVAC	0 to 10 000
0 to 10 V linear m\	0 to 10.000
Flow control	
with MOVE 1250	CLOSED, 5.0 x 10 ⁻⁶ to 1.25 x 10 ⁺³ mbar x l/s
with MOVE X	CLOSED, 1.0 x 10 ⁻⁵ to 1.0 x 10 ⁺² mbar x l/s
with analog output AA 2 m\	0 to 10 000
Operating mode	Gas flow regulation (upstream regulation)
	Pressure regulation (downstream regulation)
Operating	Local operation or remote control
Digital input	Flow matching, opening/closing of external valves /
	operating mode flow/regulation / switching on of emission/degas
Digital output	Valve position indication; valve fault; sensor fault;
	status message for sensor and valve;
	pressure regulation upstream/downstream
Analog input	0 to 10 V DC setpoint pressure/flow
Analog output	0 to 10 V DC,
	Pressure sensor signal, valve signal, valve position MOVE 1250
Serial interface	RS 232 C, RS 485 C
Housing	1/4 19", for installation or tabletop use
Weight kg (lbs	1.65 (3.64)
Temperature	
Operation °C	
Storage	-40 to +60
Protection class	30 (EN 60 529)

 $^{^{1)}\,\,}$ Valid for sensor setting 0 to +10 V linear and analog output A02

Ordering Information

Controller CMove 1250

Controller CMove 1250 Control valve Move 1250 Connection cable CMove 1250 - Control valve Move 1250 3 m 230 220 5 m 230 221 10 m 230 222 15 m 230 223 20 m 230 224 25 m 230 225 Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
Control valve	
Move 1250 Connection cable CMove 1250 – Control valve Move 1250 3 m 230 220 5 m 230 221 10 m 230 222 15 m 230 223 20 m 230 224 25 m 230 225 Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
Connection cable CMove 1250 – Control valve Move 1250 3 m 230 220 5 m 230 221 10 m 230 222 15 m 230 223 20 m 230 224 25 m 230 225 Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
CMove 1250 – Control valve Move 1250 3 m 230 220 5 m 230 221 10 m 230 222 15 m 230 223 20 m 230 224 25 m 230 225 Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
3 m 230 220 5 m 230 221 10 m 230 222 15 m 230 223 20 m 230 224 25 m 230 225 Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
5 m 230 221 10 m 230 222 15 m 230 223 20 m 230 224 25 m 230 225 Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
10 m 230 222 15 m 230 223 20 m 230 224 25 m 230 225 Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
15 m 230 223 20 m 230 224 25 m 230 225 Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
20 m 230 224 25 m 230 225 Sensor cable TTR 90, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
25 m 230 225 Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
Sensor cable TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
TTR 90, TTR 100, TTR 101, TTR 211, TTR 216, PTR 225, PTR 237	
TTR 216, PTR 225, PTR 237	
5 m 124 26	
10 m 230 012	
15 m 124 27	
20 m 124 28	
30 m 124 29	
50 m 124 31	
75 m 124 32	
100 m 124 33	
ITR 90, ITR 100, ITR 200	
5 m 124 55	
10 m 230 022	
15 m 124 56	
20 m 124 57	
30 m 124 58	
CTR 90, CTR 91, CTR 100, CTR 101	
5 m 230 013	
10 m 230 014	
15 m 230 015	
20 m 230 016	
30 m 230 017	
50 m 230 019	
75 m 230 020	
100 m 230 021	

Interface Module IMove 1250 for Move 1250

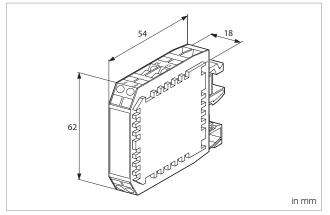
Advantages to the User

- Status query and valve position

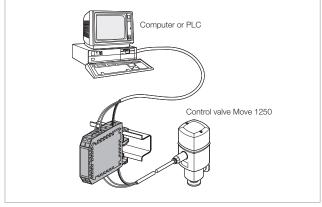
Typical Applications

The interface module IMove 1250 connects a RS 232C interface (for example from a computer or a PLC) to the digital interface of the Move 1250 control valve.

Technical Data


Interface-Modul IMove 1250

Temperature		
Operation	°C	+5 to +50
Storage	°C	-10 to +65
Protection class	IP	30
Operation voltage	V DC	24 ± 10%
Current consumption		
IMove 1250	mA	< 50 (own consumption)f)
Move 1250	mA	< 500
Provide upfront fusing		1 AT
Interface		RS 232 C
Mounting		
Support rails		EN 50022-35 (symmetrical)
		EN 50035-G32 (asymmetrical)
Weight	g	40


Ordering Information

Interface Module IMove 1250

	Part No.
Interface Module IMove 1250	230 201

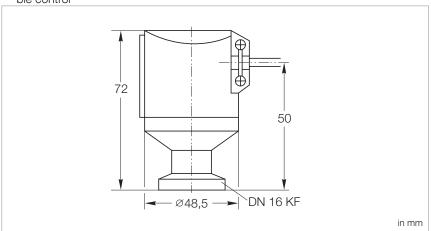
Dimensional drawing for the IMove 1250

Connection of the IMove 1250

Low Pressure Safety Switch PS 113 A

Switch indicating whether or not the pressure has reached the level of the atmospheric pressure after venting. Preset diaphragm pressure switch set to a trigger of 6 mbar (4 Torr) below atmospheric pressure.

Advantages to the User


- Rugged design
- High switching capacity
- Corrosion protected
- Easy to use
- IP 44 protection
- Can be connected to a programmable control

Typical Applications

- Venting facilities
- Safety shutdown of vacuum systems
- Load locks
- Increased switching capacity when using the switching amplifier SV 110

Technical Note

Due to the diaphragm material used (EPDM) the PS 113 A is not suited for applications in which the process gas contains large quantities of helium. Owing to helium permeation, the leak rate of the diaphragm for helium amounts to values \leq 1 x 10⁻⁴ mbar x l/s.

Dimensional drawing for the low pressure safety switch PS 113 A

Low Pressure Safety Switch

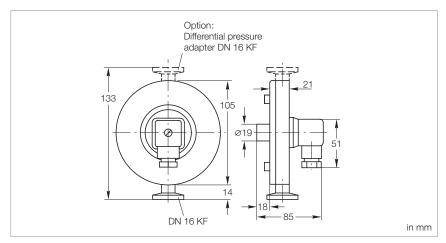
Switching pressure mbar (Torr)	Approx. 6 (4.5) below atmospheric pressure
Return switching pressure mbar (Torr)	3 (2.3) below atmospheric pressure
Switching inaccuracy mbar (Torr)	2 (1.5)
Max. permissible operating pressure (abs.) mbar (Torr)	2000 (1500)
Storage temperature range $^{\circ}\text{C}$	-25 to +85
Nominal temperature range °C	0 to +85
Switching contact	Changeover contacts, gold-plated, for prog. controls
Contact life	> 10 ⁵ switching cycles
Switching capacity	100 mA / 24 V AC 30 mA / 24 V DC
Electrical connection	6.3 mm flat plug
Vacuum connection DN	16 ISO-KF
Helium permeation mbar (Torr)	≤ 5 x 10 ⁻⁶
Dead volume cm ³	2
Materials in contact with the medium	Stainless steel 1.4305, Stainless steel 1.4310, Stainless steel 1.4300 PTFE coated, EPDM
Weight g	315
Protection class IP	44

Ordering Information

Low Pressure Safety Switch

	Part No.
Low pressure safety switch PS 113 A, DN 16 ISO-KF;	
complete with 3 m long cable	230 011

Pressure Switch PS 115



Advantages to the User

- High switching accuracy (±0.1 mbar)
- Stable long term operating characteristics
- Rugged, corrosion protected design
- Increased switching capacity (floating) when using the switching amplifier SV 110
- Switching contact (n.c.) in the reference chamber and thus protected against corrosion
- For operating pressures up to 3 bar
- For high ambient temperatures
- Upon request, the switching threshold may be set in the factory

Rugged absolute pressure switch with electrical switching contact and a adjustable switching pressure between 0.5 and 2000 mbar (0.4 and 1500 Torr).

Through the differential pressure adapter (optional) the PS 115 pressure switch may be converted to operate as a differential pressure switch. The adapter consists of a DN 16 ISO-KF flange with screw-in thread and a sealing arrangement, and it is screwed into the PS 115 instead of the adjustment valve. The operating range extends to 2000 mbar (1500 Torr). Brief over-loading to 3000 mbar (2250 Torr) is permissible without impairing switching accuracy. In this operating range differential values of +5 to -20 mbar (+3.75 to -15 Torr) can be adjusted via the set screw.

Dimensional drawing for the pressure switch PS 115

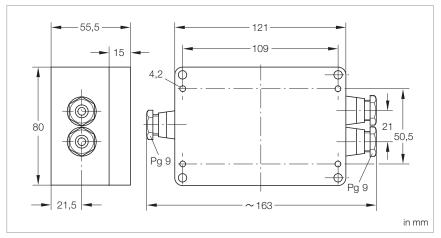
Pressure SwitchPS 115

Overload limit mbar (Torr) 3000 (2250) Sensitivity mbar (Torr) 0.1 (0.75) Switching hysteresis mbar (Torr) 0.5 (0.375) Temperature coefficient %/°K 0.4 of the switching value Nominal temperature range briefly (max. 8 h) °C 120 Switching (max. 8 h) °C 120 Switching contact Plug Switching voltage V 24 Switching current (max.) mA 10 Contact resistance, max. kΩ 1 Electrical connection Plug (DIN 43 650) Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Measurement chamber Reference chamber Stainless steell 1.4301; 1.4401; 1.4310; 1.3541; FPM /FKM Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the measurement chamber approx. cm³ 4 Volume of the reference chamber cm³ 20				
Sensitivity mbar (Torr) Switching hysteresis mbar (Torr) Temperature coefficient %/°K Nominal temperature range briefly (max. 8 h) °C continuous °C Switching contact Switching contact Switching current (max.) mA 10 Contact resistance, max. kΩ 1 Plug (DIN 43 650) Protection class IP Materials in contact with the medium Measurement chamber Reference chamber, approx. cm³ Volume of the reference chamber, approx. cm³ Switching hysteresis mbar (Torr) 0.1 (0.75) 0.2 (0.375) 0.4 of the switching value 0.4 (0.4 of the switching value 0.5 (0.375) 120 120 120 120 120 140 10 10 10 10 10 10 11 11	Switching range	mbar (Torr)	0.5 to 2000 (0.375 to 1500)	
Switching hysteresis mbar (Torr) Temperature coefficient %/°K Nominal temperature range briefly (max. 8 h) °C continuous °C Switching contact Switching voltage Switching voltage V Switching current (max.) mA Contact resistance, max. kΩ Electrical connection Protection class IP 65 Vacuum connection Materials in contact with the medium Measurement chamber Reference chamber Reference chamber Volume of the measurement chamber approx. cm³ Volume of the reference chamber, approx. cm³ 20	Overload limit	mbar (Torr)	3000 (2250)	
Temperature coefficient %/°K Nominal temperature range briefly (max. 8 h) °C continuous °C Switching contact Switching voltage V Switching current (max.) mA Contact resistance, max. kΩ Electrical connection Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Measurement chamber Reference chamber Neference chamber Chamber approx. Cm³ Value of the reference Chamber, approx. Cm 120 C 0 to +90 140 16 ISO-KF Stainless steell 1.43 650) Protection class Stainless steell 1.4301; 1.4401; 1.3541; FPM /FKM Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold	Sensitivity	mbar (Torr)	0.1 (0.75)	
Nominal temperature range briefly (max. 8 h) °C continuous °C 0 to +90 Switching contact Plug Switching voltage V 24 Switching current (max.) mA 10 Contact resistance, max. kΩ 1 Electrical connection Plug (DIN 43 650) Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Measurement chamber Reference chamber Stainless steell 1.4301; 1.4401; 1.3541; FPM /FKM Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the measurement chamber approx. cm³ 20	Switching hysteresis	mbar (Torr)	0.5 (0.375)	
briefly (max. 8 h) °C continuous °C 0 to +90 Switching contact Plug Switching voltage V 24 Switching current (max.) mA 10 Contact resistance, max. kΩ 1 Electrical connection Plug (DIN 43 650) Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Measurement chamber Reference chamber Volume of the measurement chamber approx. cm³ 4 Volume of the reference chamber, approx. cm³ 20	Temperature coefficient	%/°K	0.4 of the switching value	
continuous °C 0 to +90 Switching contact Plug Switching voltage V 24 Switching current (max.) mA 10 Contact resistance, max. kΩ 1 Electrical connection Plug (DIN 43 650) Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Stainless steell 1.4301; 1.4401; 1.4310; 1.3541; FPM /FKM Measurement chamber Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the measurement chamber approx. cm³ 4 Volume of the reference chamber, approx. cm³ 20	Nominal temperature range			
continuous °C 0 to +90 Switching contact Plug Switching voltage V 24 Switching current (max.) mA 10 Contact resistance, max. kΩ 1 Electrical connection Plug (DIN 43 650) Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Stainless steell 1.4301; 1.4401; 1.4310; 1.3541; FPM /FKM Measurement chamber Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the measurement chamber approx. cm³ 4 Volume of the reference chamber, approx. cm³ 20	briefly (max. 8 h)	°C	120	
Switching voltage Switching current (max.)		°C	0 to +90	
Switching current (max.) mA Contact resistance, max. kΩ Electrical connection Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Measurement chamber Reference chamber Stainless steell 1.4301; 1.4401; 1.3541; FPM /FKM Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the measurement chamber approx. Cm³ Volume of the reference chamber, approx. Cm³ 20	Switching contact		Plug	
Switching current (max.) mA Contact resistance, max. kΩ Electrical connection Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Measurement chamber Reference chamber Stainless steell 1.4301; 1.4401; 1.3541; FPM /FKM Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the measurement chamber approx. Cm³ Volume of the reference chamber, approx. Cm³ 20	Switching voltage	V	24	
Electrical connection Plug (DIN 43 650) Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Measurement chamber Reference chamber Stainless steell 1.4301; 1.4401; 1.3541; FPM /FKM Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the measurement chamber approx. cm³ 4 Volume of the reference chamber, approx. cm³ 20		mA	10	
Protection class IP 65 Vacuum connection DN 16 ISO-KF Materials in contact with the medium Measurement chamber Reference chamber Stainless steell 1.4301; 1.4401; 1.4310; 1.3541; FPM /FKM Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the measurement chamber approx. cm³ 4 Volume of the reference chamber, approx. cm³ 20	Contact resistance, max.	kΩ	1	
Vacuum connection DN 16 ISO-KF Materials in contact with the medium Measurement chamber Reference chamber Volume of the measurement chamber approx. Volume of the reference chamber, approx. Cm³ 20	Electrical connection		Plug (DIN 43 650)	
Materials in contact with the medium Measurement chamber Reference chamber Volume of the measurement chamber approx. Volume of the reference chamber, approx. Cm3 Stainless steell 1.4301; 1.4401; 1.3541; FPM /FKM Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the reference chamber, approx. Cm3 20	Protection class	IP	65	
Measurement chamber Reference chamberStainless steell 1.4301; 1.4401; 1.4310; 1.3541; FPM /FKM Stainless steell 1.4301; 1.4401; 1.3541; Glass; GoldVolume of the measurement chamber approx.cm³4Volume of the reference chamber, approx.cm³20	Vacuum connection	DN	16 ISO-KF	
Reference chamber Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold Volume of the measurement chamber approx. cm³ 4 Volume of the reference chamber, approx. cm³ 20	Materials in contact with the me	edium		
Volume of the measurement chamber approx. cm³ 4 Volume of the reference chamber, approx. cm³ 20	Measurement chamber		Stainless steell 1.4301; 1.4401; 1.4310; 1.3541; FPM /FKM	
chamber approx. cm³ 4 Volume of the reference chamber, approx. cm³ 20	Reference chamber		Stainless steell 1.4301; 1.4401; 1.3541; Glass; Gold	
Volume of the reference chamber, approx. cm³ 20	Volume of the measurement			
chamber, approx. cm³ 20	chamber approx.	cm ³	4	
	Volume of the reference			
Weight kg (lbs) 1.3 (2.87)	chamber, approx.	cm ³	20	
	Weight	kg (lbs)	1.3 (2.87)	

Ordering Information

Pressure SwitchPS 115

	Part No.
Pressure Switch PS 115, DN 16 ISO-KF	160 04
Pressure switch adjustment	160 05
For floating installations without SV 110,	
Clamping ring DN 16 ISO-KF, plastic	200 28 306
Centering ring, DN 16 ISO-KF, plastic	200 28 307
Option	
Differential pressure adapter, DN 16 ISO-KF	
for connection to the PS 115	160 74
Spare parts kit PS 115	E 160 06
SV 110 switching amplifier	160 78


Switching Amplifier SV 110

The diaphragm contact of the pressure switches is connected on one side to ground and is rated to 24 V / 10 mA max. When wanting to switch higher voltages or currents, a switching amplifier will be needed. The switching amplifier is equipped with powerful floating changeover contacts. The output relay is energized as soon as the pressure drops below the switching threshold set up on the pressure switch.

The electrical connections are provided via screw terminals and are run out of the plastic enclosure through PG fittings.

Advantages to the User

- Increased ratings for the switch
- Changeover contact

Dimensional drawing for the switching amplifier SV 110

Switching Amplifier SV 110

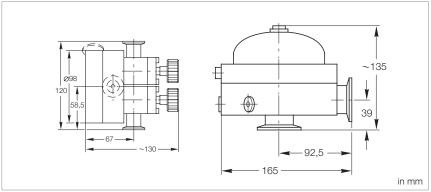
Mains connection 50/60 Hz (selectable)		110/130/220/240 V	
Power consumption	VA	3	
Output relay			
Switching voltage / current	V/A	250 / 5	
Switching power, max.	VA	500	
Response time	ms	30	
Release time	ms	7	
Control circuit	V / mA	24 / 10	
Ambient temperature, max.	°C	50	
Weight, approx.	kg (lbs)	0.36 (0.79)	

Ordering Information

Switching AmplifierSV 110

	Part No.
Switching amplifier SV 110	160 78

Diaphragm Pressure Regulators MR 16/MR 50


The MR 16/50 diaphragm regulators are absolute pressure regulators which automatically adapt the pumping speed of a vacuum pump depending on the amount of gas, without the need for an external power supply.

Advantages to the User

- Non-incremental, automatic pressure control
- Simple setting of the control pressures
- High control accuracy
- Corrosion protected stainless steel design
- Easy to disassemble for cleaning and maintenance
- Trouble-free operation in ex. areas
- Built-in isolation valves for the process connection and the vacuum pump (MR 16)

Typical Applications

- Distillation processes of all kinds
- Solvent recovery
- Drying processes
- Temperature control on bath cryostats
- Degassing of liquids and plastics

Dimensional drawing for the diaphragm regulator MR 16 (left) and MR 50 (right)

Diaphragm Pressure Regulator

		MR 16	MR 50		
Control range	mbar (Torr)	10 to 1000 (7.5 to 750)		
Control inaccuracy		± 2% of the pre (10 – 90%			
Throughput	m³/h	16	50		
Nominal temperature range	°C	+5 to	+100		
Storage temperature range	°C	-25 to	+60		
Temperature coefficient	%/K	0.0	0.3		
Setting time	ms	5			
Permissible overload for brief periods	bar	3			
Diaphragm material		FPM (FKM)/EPDM			
Housing material		stainless st	eel 1.4571		
Installation orientation		Any			
Dimensions		see dimensional drawing			
Vacuum connection	2x DN	16 ISO-KF	40 ISO-KF		
Measurement connection	3x thread R	1/8"			
Weight, approx.	kg (lbs)	2.7 (6.0)	8.0 (17.6)		

Ordering Information

Diaphragm Pressure Regulator

MR 50

	Part No.	Part No.
Diaphragm pressure regulator		
MR 16, DN 16 ISO-KF	160 25	-
MR 50, DN 40 ISO-KF	-	160 27
Options		
Stainless steel measurement flange,		
DN 16 ISO-KF,		
for connection to a reference and/or		
process chamber or pumping stud	160 26	160 26
KALREZ diaphragm	-	200 28 597
Spare Parts		
EPDM diaphragm and seal kit	EK 160 29	_
Viton diaphragm and seal kit	EK 160 31	_
Seal kit MR 50,		
incl. EPDM and Viton diaphragms	_	EK 160 32
Adjustment screw for		
the adjustable valve,		
complete with seal	240 001	240 001
complete with seal	270 00 1	270 00 1

MR 16

Miscellaneous

Leybold Calibration Service

Calibration of vacuum gauges in the pressure range from 10-8 to 1000 mbar (10-8 to 750 Torr) as DAkkS or factory calibration.

Advantages to the User

- Clear reference to the reference quantities
- Reproducible measurements
- Constantly high quality over time
- Reliable checking of existing gauges
- Unambiguous description of the process

Since 1981 Leybold has been offering to all customers an impartial calibration service for gauges and sensors of any make. A DAkkS calibration certificate or a factory calibration certificate is issued for every calibration. Instruments with insufficient long-term stability or such instruments where the principle of measurement is not suited for calibration, can not be calibrated.

Typical Applications

Calibrated vacuum gauges are used under the following conditions:

 If the requirements concerning reproducibility and comparability of experiment runs are high

- If an unambiguous reference is required for a large number of pressure gauges
- If an unambiguous description for processes is required
- If for experiments and processes unambiguous traceability of the measured pressures to basic quantities is demanded by the authorities
- If testing to DIN/ISO 9000 is required in the following areas
 - Research
 - Thin-film engineering
 - Manufacture of systems
 - Military
 - Energy
 - Chemistry production
 - Production of pharmaceuticals and herbicides
 - Sputtering systems
 - Aircraft and space industry
 - Manufacture of lamp

DAkkS / Factory Calibration

It is the task of the Deutschen Akkreditierungsstelle (DAkkS) to ensure traceability of industrial measurements and testing to national standards.

The DAkkS is supported jointly by the Federal Institution for Physics and Technology (PTB), the industry, the Federal Minister for Economics and the Western European Metrology Club (WEMC).

The transfer standards in the DAkkS calibration facility used by Leybold are checked regularly (recalibrated) by the PTB.

Within the framework of the DAkkS, the calibration system at Leybold has been checked and approved by the PTB and the applied transfer standards have been calibrated by the PTB.

Factory calibrations were performed with standards which have not been calibrated directly at the PTB; instead the transfer standards of the in-house calibration service are used. Thus traceability to national standards is ensured in both cases.

DAkkS Calibration

Calibration range mbar	(Torr) to 10 ⁻³	to 10 ⁻⁵	to 10 ⁻⁸
------------------------	----------------------------	---------------------	---------------------

Ordering Information

DAkkS Calibration

	Part No.	Part No.	Part No.
DAkkS Calibration	157 12	157 13	157 14

Technical Data

Factory Calibration

Calibration range mbar (Tor	to 10 ⁻³	to 10 ⁻⁵	to 10 ⁻⁸
-----------------------------	---------------------	---------------------	---------------------

Ordering Information

Factory Calibration

	Part No.	Part No.	Part No.
Factory Calibration	154 22	154 23	154 24

For PENNINGVAC transmitters only Factory Calibration is available.

Calibration Systems are described in the Catalog Part "Vacuum Pump Systems".

Leybold Service: Easy, Competent, Reliable

We are where you are.

With our comprehensive range of innovative service solutions, we offer unrivalled support for your Leybold vacuum pumps and we are committed to:

- Providing you with a reliable, first-class service throughout your pump's lifecycle, no matter where in the world it is installed.
- Maximizing your pump's uptime and ensuring it gets the best possible service.
- Offering you specialist support with preventive maintenance and repairs.

Read on to find out more about our complete range of vacuum pump services and how our specialists can help you. The rewards are maximum uptimes, low running costs and longer lifecycles.

Service Contracts

Our full range of service contracts are designed to ensure the lowest total cost of ownership of your pumps, maximizing their performance and uptime. From preventive maintenance contracts to warranty extensions, we offer you customized solutions that let you focus fully on your production by providing a perfect match to your needs.

Spare Parts and Kits

Our genuine spare parts fit your vacuum pump perfectly to ensure high reliability, performance, and a long service life. To ease your workflow and ensure you have everything you need for your pump, we put together spare parts kits for specific maintenance activities.

LEYBONOL Vacuum Pump Oil

LEYBONOL has been specially formulated to achieve the best performance for your pump. The premium quality of LEYBONOL ensures long oil exchange intervals and reduces power consumption as well as wear and maintenance costs. Our certified oils keep your production running and extend your pump life expectancy.

Find the correct oil for your pump using the **Oil Finder** (guide.leybold.com/en/).

GENIUS Instant Insights™

Our connectivity solution offers you 24/7 remote mobile access to your vacuum pumps. Alarms on failures, service maintenance, insights on up-time and energy consumption are all transparent on the GENIUS Instant Insights™ Portal. With GENIUS Instant Insights™ you can set up real time notifications about important events coming from the vacuum system, giving you the opportunity to avoid costly downtime and production losses – it has never been so convenient and easy to have a healthy and reliable vacuum pump installation.

Service Technology Center

Fully equipped to handle pumps from every kind of application, even the harshest, our service technology centers are ready to service your pumps. From preventive maintenance to repair, we offer transparent fixed-price solutions and the capability to do anything your pump requires.

Field Service

Our team of vacuum pump experts come to your site to perform maintenance on your pumps, whether it is routine service or troubleshooting. Competent, reliable and there for you, they know what your pumps need to perform flawlessly at their best.

Certified and Exchange

Our certified and exchange stock is always available in an emergency and to ensure your manufacturing continues as smoothly as possible with a minimum of downtime. All pumps come with a 12-month warranty and are rebuilt and tested to industry standards to ensure that they deliver OEM performance.

Sales and Service

Germany

Leybold GmbH

Leybold Gmbh Bonner Strasse 498 D-50968 Cologne T: +49-(0)221-347 1234 F: +49-(0)221-347 31234 sales@leybold.com www.leybold.com

Leybold GmbH

Sales Area North Branch Office Berlin Industriestrasse 10b D-12099 Berlin

+49-(0)30-435 609 0 +49-(0)30-435 609 10 sales.bn@leybold.com

Leybold GmbH Sales Office South

Branch Office Munich Karl-Hammerschmidt-Strasse 34 D-85609 Aschheim-Dornach T: +49-(0)89-357 33 9-10 F: +49-(0)89-357 33 9-33 sales.mn@leybold.com service.mn@leybold.com

Leybold Dresden GmbH Service Competence Center Zur Wetterwarte 50, Haus 304 D-01109 Dresden

Service: +49-(0)351-88 55 00 +49-(0)351-88 55 041

info.dr@leybold.com

Europe

Belgium

Levbold Nederland B.V. Belgisch bijkantoor

Leuvensesteenweg 542 B-1930 Zaventem

Sales: T: -+32-2-711 00 83 +32-2-720 83 38 sales.zv@leybold.com Service: T: +3

+32-2-711 00 82 +32-2-720 83 38 service.zv@leybold.com

France

Leybold France S.A.S.Parc du Technopolis, Bâtiment Beta 3, Avenue du Canada F-91940 Les Ulis cedex Sales and Service: T: +33-1-69 82 48 00 F: +33-1-69 07 57 38 sales or@levbold.com orsay.sav@leybold.com

Leybold France S.A.S.

marketing.vc@leybold.com

Valence Factory
640, Rue A. Bergès
B.P. 107
F-26501 Bourg-lès-Valence Cedex
T: +33-4-75 82 33 00
F: +33-4-75 82 92 69

Great Britain

Leybold UK LTD.

Unit 9 Silverglade Business Park Leatherhead Road Chessington Surrey (London) KT9 2QL Sales: +44-13-7273 7300 +44-13-7273 7301 sales.ln@leybold.com +44-13-7273 7320 +44-13-7273 7303 service.ln@leybold.com

Leybold Italia S.r.I. Via Filippo Brunelleschi 2 I-20093 Cologno Monzese Sales:

+39-02-27 22 31 +39-02-27 20 96 41 sales.mi@leybold.com Service:

T: +39-02-27 22 31 F: +39-02-27 22 32 17 service.mi@leybold.com

Netherlands

Levbold Nederland B.V.

Floridadreef 102 NL-3565 AM Utrecht Sales and Service: +31-(30) 242 63 30 +31-(30) 242 63 31 sales.ut@leybold.com service.ut@leybold.com

Russia

Levbold Russia

Vashutinskoe Road 15, Khimki, Moscow region, Russia +7 495 933 55 50 LeyboldRussia@leybold.com

Switzerland

Leybold Schweiz AG

Hinterbergstrasse 56 CH-6312 Steinhausen Warehouse and shipping address: Riedthofstrasse 214 CH-8105 Regensdorf Sales: +41-44-308 40 50 +41-44-308 40 60 sales.zh@leybold.com Service: +41-44-308 40 62 +41-44-308 40 60

Spain

Leybold Hispánica, S.A.

service.zh@leybold.com

C/. Huelva, 7 E-08940 Cornellá de Llobregat (Barcelona) Sales: +34-93-666 43 11 +34-93-666 43 70 sales.ba@leybold.com Service: +34-93-666 46 11 +34-93-685 43 70

service.ba@levbold.com

America

USA

Levbold USA Inc.

6005 Enterprise Drive Export, PA 15632

Sales and Service: T: +1-800-764-5369 F: +1-800-325-4353 F: +1-800-215-7782 sales.ex@leybold.com service.ex@leybold.com

Brazil

Leybold do Brasil Ltda. Av. Tamboré, 937, Tamboré Distrito Industrial CEP 06460-000 Barueri - SP Sales und Service: T: +55 11 3376 4604 info.ju@leybold.com

Asia

P. R. China

Leybold (Tianjin) International Trade Co. Ltd. Beichen Economic

Development Area (BEDA), No. 8 Western Shuangchen Road Tianjin 300400 China Sales and Service: T: +86-400 038 8989 +86-800 818 0033 +86-22-2697 4061 +86-22-2697 2017 sales.tj@leybold.com

India

Levbold India Pvt Ltd.

T-97/2, MIDC Bhosari Pune-411 026 Indien Sales and Service: T: +91-80-2783 9925 F: +91-80-2783 9926 sales.bgl@leybold.com service.bgl@leybold.com

Japan

sales.yh@leybold.com

Leybold Japan Co., Ltd. Shin-Yokohama A.K.Bldg., 4th floor 3-23-3, Shin-Yokohama Kohoku-ku, Yokohama-shi Kanagawa-ken 222-0033 Japan Sales: +81-45-471-3330 +81-45-471-3323

Malaysia

Leybold Malaysia

Leybold Singapore Pte Ltd. No. 1 Jalan Hi-Tech 2/6 Kulim Hi-Tech Park Kulim, Kedah Darul Aman 09090 Malaysia Sales and Service:
T: +604 4020 222
F: +604 4020 221
sales.ku@leybold.com service.ku@leybold.com

Leybold Korea Ltd.

25, Hwangsaeul-ro 258 beon-gil, undang-gu, Seongnam-si, Gyeonggi-do, (7F Sunae Finance Tower) 13595 Bundang Sales: +82-31 785 1367 +82-31 785 1359 sales.bd@leybold.com

Service: T: +82-41 589 3035 F: +82-41 588 0166 service.cn@leybold.com

Singapore

Leybold Singapore Pte Ltd.42 Loyang Drive
Loyang Industrial Estate Singapore 508962 Singapore Sales and Service: +65-6303 7030 +65-6773 0039 info.sg@leybold.com

Leybold Taiwan Ltd.

ToF., No. 32, Chenggong 12th St., Zhubei City, Hsinchu County 302 Taiwan, R.O.C. Sales and Service: +886-3-500 1688 +886-3-550 6523 info.hc@leybold.com

Leybold GmbH

Bonner Strasse 498 D-50968 Cologne T: +49-(0)221-347-0 F: +49-(0)221-347-1250 info@leybold.com

